给定一个长度为 n
的整数数组 nums
。
假设 arrk
是数组 nums
顺时针旋转 k
个位置后的数组,我们定义 nums
的 旋转函数 F
为:
F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]
返回 F(0), F(1), ..., F(n-1)
中的最大值 。
生成的测试用例让答案符合 32 位 整数。
示例 1:
输入: nums = [4,3,2,6] 输出: 26 解释: F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。
示例 2:
输入: nums = [100] 输出: 0
提示:
n == nums.length
1 <= n <= 105
-100 <= nums[i] <= 100
f(0) = 0 * nums[0] + 1 * nums[1] + ... + (n - 1) * nums[n - 1]
f(1) = 1 * nums[0] + 2 * nums[1] + ... + 0 * nums[n - 1]
...
f(k) = f(k - 1) + s - n * nums[n - k]
class Solution:
def maxRotateFunction(self, nums: List[int]) -> int:
f = sum(i * v for i, v in enumerate(nums))
n, s = len(nums), sum(nums)
ans = f
for i in range(1, n):
f = f + s - n * nums[n - i]
ans = max(ans, f)
return ans
class Solution {
public int maxRotateFunction(int[] nums) {
int f = 0;
int s = 0;
int n = nums.length;
for (int i = 0; i < n; ++i) {
f += i * nums[i];
s += nums[i];
}
int ans = f;
for (int i = 1; i < n; ++i) {
f = f + s - n * nums[n - i];
ans = Math.max(ans, f);
}
return ans;
}
}
class Solution {
public:
int maxRotateFunction(vector<int>& nums) {
int f = 0, s = 0, n = nums.size();
for (int i = 0; i < n; ++i) {
f += i * nums[i];
s += nums[i];
}
int ans = f;
for (int i = 1; i < n; ++i) {
f = f + s - n * nums[n - i];
ans = max(ans, f);
}
return ans;
}
};
func maxRotateFunction(nums []int) int {
f, s, n := 0, 0, len(nums)
for i, v := range nums {
f += i * v
s += v
}
ans := f
for i := 1; i < n; i++ {
f = f + s - n*nums[n-i]
if ans < f {
ans = f
}
}
return ans
}
function maxRotateFunction(nums: number[]): number {
const n = nums.length;
const sum = nums.reduce((r, v) => r + v);
let res = nums.reduce((r, v, i) => r + v * i, 0);
let pre = res;
for (let i = 1; i < n; i++) {
pre = pre - (sum - nums[i - 1]) + nums[i - 1] * (n - 1);
res = Math.max(res, pre);
}
return res;
}
impl Solution {
pub fn max_rotate_function(nums: Vec<i32>) -> i32 {
let n = nums.len();
let sum: i32 = nums.iter().sum();
let mut pre: i32 = nums.iter().enumerate().map(|(i, &v)| i as i32 * v).sum();
(0..n)
.map(|i| {
let res = pre;
pre = pre - (sum - nums[i]) + nums[i] * (n - 1) as i32;
res
})
.max()
.unwrap_or(0)
}
}