Skip to content

Latest commit

 

History

History
198 lines (166 loc) · 5.23 KB

File metadata and controls

198 lines (166 loc) · 5.23 KB

中文文档

Description

Given the root of a binary tree, return the sum of every tree node's tilt.

The tilt of a tree node is the absolute difference between the sum of all left subtree node values and all right subtree node values. If a node does not have a left child, then the sum of the left subtree node values is treated as 0. The rule is similar if the node does not have a right child.

 

Example 1:

Input: root = [1,2,3]
Output: 1
Explanation: 
Tilt of node 2 : |0-0| = 0 (no children)
Tilt of node 3 : |0-0| = 0 (no children)
Tilt of node 1 : |2-3| = 1 (left subtree is just left child, so sum is 2; right subtree is just right child, so sum is 3)
Sum of every tilt : 0 + 0 + 1 = 1

Example 2:

Input: root = [4,2,9,3,5,null,7]
Output: 15
Explanation: 
Tilt of node 3 : |0-0| = 0 (no children)
Tilt of node 5 : |0-0| = 0 (no children)
Tilt of node 7 : |0-0| = 0 (no children)
Tilt of node 2 : |3-5| = 2 (left subtree is just left child, so sum is 3; right subtree is just right child, so sum is 5)
Tilt of node 9 : |0-7| = 7 (no left child, so sum is 0; right subtree is just right child, so sum is 7)
Tilt of node 4 : |(3+5+2)-(9+7)| = |10-16| = 6 (left subtree values are 3, 5, and 2, which sums to 10; right subtree values are 9 and 7, which sums to 16)
Sum of every tilt : 0 + 0 + 0 + 2 + 7 + 6 = 15

Example 3:

Input: root = [21,7,14,1,1,2,2,3,3]
Output: 9

 

Constraints:

  • The number of nodes in the tree is in the range [0, 104].
  • -1000 <= Node.val <= 1000

Solutions

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def findTilt(self, root: TreeNode) -> int:
        ans = 0

        def sum(root):
            if root is None:
                return 0
            nonlocal ans
            left = sum(root.left)
            right = sum(root.right)
            ans += abs(left - right)
            return root.val + left + right

        sum(root)
        return ans

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private int ans;

    public int findTilt(TreeNode root) {
        ans = 0;
        sum(root);
        return ans;
    }

    private int sum(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int left = sum(root.left);
        int right = sum(root.right);
        ans += Math.abs(left - right);
        return root.val + left + right;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int ans;

    int findTilt(TreeNode* root) {
        ans = 0;
        sum(root);
        return ans;
    }

    int sum(TreeNode* root) {
        if (!root) return 0;
        int left = sum(root->left), right = sum(root->right);
        ans += abs(left - right);
        return root->val + left + right;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
var ans int

func findTilt(root *TreeNode) int {
	ans = 0
	sum(root)
	return ans
}

func sum(root *TreeNode) int {
	if root == nil {
		return 0
	}
	left, right := sum(root.Left), sum(root.Right)
	ans += abs(left - right)
	return root.Val + left + right
}

func abs(x int) int {
	if x > 0 {
		return x
	}
	return -x
}

...