forked from greatscottgadgets/hackrf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusb_queue.c
227 lines (200 loc) · 7.62 KB
/
usb_queue.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*
* Copyright 2012 Jared Boone
* Copyright 2013 Ben Gamari
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include <assert.h>
#include <libopencm3/cm3/cortex.h>
#include <libopencm3/cm3/sync.h>
#include "usb.h"
#include "usb_queue.h"
usb_queue_t* endpoint_queues[12] = {};
#define USB_ENDPOINT_INDEX(endpoint_address) (((endpoint_address & 0xF) * 2) + ((endpoint_address >> 7) & 1))
static usb_queue_t* endpoint_queue(
const usb_endpoint_t* const endpoint
) {
uint32_t index = USB_ENDPOINT_INDEX(endpoint->address);
if (endpoint_queues[index] == NULL) while (1);
return endpoint_queues[index];
}
void usb_queue_init(
usb_queue_t* const queue
) {
uint32_t index = USB_ENDPOINT_INDEX(queue->endpoint->address);
if (endpoint_queues[index] != NULL) while (1);
endpoint_queues[index] = queue;
usb_transfer_t* t = queue->free_transfers;
for (unsigned int i=0; i < queue->pool_size - 1; i++, t++) {
t->next = t+1;
t->queue = queue;
}
t->next = NULL;
t->queue = queue;
}
/* Allocate a transfer */
static usb_transfer_t* allocate_transfer(
usb_queue_t* const queue
) {
bool aborted;
usb_transfer_t* transfer;
if (queue->free_transfers == NULL)
return NULL;
do {
transfer = (void *) __ldrex((uint32_t *) &queue->free_transfers);
aborted = __strex((uint32_t) transfer->next, (uint32_t *) &queue->free_transfers);
} while (aborted);
transfer->next = NULL;
return transfer;
}
/* Place a transfer in the free list */
static void free_transfer(usb_transfer_t* const transfer)
{
usb_queue_t* const queue = transfer->queue;
bool aborted;
do {
transfer->next = (void *) __ldrex((uint32_t *) &queue->free_transfers);
aborted = __strex((uint32_t) transfer, (uint32_t *) &queue->free_transfers);
} while (aborted);
}
/* Add a transfer to the end of an endpoint's queue. Returns the old
* tail or NULL is the queue was empty
*/
static usb_transfer_t* endpoint_queue_transfer(
usb_transfer_t* const transfer
) {
usb_queue_t* const queue = transfer->queue;
transfer->next = NULL;
if (queue->active != NULL) {
usb_transfer_t* t = queue->active;
while (t->next != NULL) t = t->next;
t->next = transfer;
return t;
} else {
queue->active = transfer;
return NULL;
}
}
static void usb_queue_flush_queue(usb_queue_t* const queue)
{
cm_disable_interrupts();
while (queue->active) {
usb_transfer_t* transfer = queue->active;
queue->active = transfer->next;
free_transfer(transfer);
}
cm_enable_interrupts();
}
void usb_queue_flush_endpoint(const usb_endpoint_t* const endpoint)
{
usb_queue_flush_queue(endpoint_queue(endpoint));
}
int usb_transfer_schedule(
const usb_endpoint_t* const endpoint,
void* const data,
const uint32_t maximum_length,
const transfer_completion_cb completion_cb,
void* const user_data
) {
usb_queue_t* const queue = endpoint_queue(endpoint);
usb_transfer_t* const transfer = allocate_transfer(queue);
if (transfer == NULL) return -1;
usb_transfer_descriptor_t* const td = &transfer->td;
// Configure the transfer descriptor
td->next_dtd_pointer = USB_TD_NEXT_DTD_POINTER_TERMINATE;
td->total_bytes =
USB_TD_DTD_TOKEN_TOTAL_BYTES(maximum_length)
| USB_TD_DTD_TOKEN_IOC
| USB_TD_DTD_TOKEN_MULTO(0)
| USB_TD_DTD_TOKEN_STATUS_ACTIVE
;
td->buffer_pointer_page[0] = (uint32_t)data;
td->buffer_pointer_page[1] = ((uint32_t)data + 0x1000) & 0xfffff000;
td->buffer_pointer_page[2] = ((uint32_t)data + 0x2000) & 0xfffff000;
td->buffer_pointer_page[3] = ((uint32_t)data + 0x3000) & 0xfffff000;
td->buffer_pointer_page[4] = ((uint32_t)data + 0x4000) & 0xfffff000;
// Fill in transfer fields
transfer->maximum_length = maximum_length;
transfer->completion_cb = completion_cb;
transfer->user_data = user_data;
cm_disable_interrupts();
usb_transfer_t* tail = endpoint_queue_transfer(transfer);
if (tail == NULL) {
// The queue is currently empty, we need to re-prime
usb_endpoint_schedule_wait(queue->endpoint, &transfer->td);
} else {
// The queue is currently running, try to append
usb_endpoint_schedule_append(queue->endpoint, &tail->td, &transfer->td);
}
cm_enable_interrupts();
return 0;
}
int usb_transfer_schedule_block(
const usb_endpoint_t* const endpoint,
void* const data,
const uint32_t maximum_length,
const transfer_completion_cb completion_cb,
void* const user_data
) {
int ret;
do {
ret = usb_transfer_schedule(endpoint, data, maximum_length,
completion_cb, user_data);
} while (ret == -1);
return 0;
}
int usb_transfer_schedule_ack(
const usb_endpoint_t* const endpoint
) {
return usb_transfer_schedule_block(endpoint, 0, 0, NULL, NULL);
}
/* Called when an endpoint might have completed a transfer */
void usb_queue_transfer_complete(usb_endpoint_t* const endpoint)
{
usb_queue_t* const queue = endpoint_queue(endpoint);
if (queue == NULL) while(1); // Uh oh
usb_transfer_t* transfer = queue->active;
while (transfer != NULL) {
uint8_t status = transfer->td.total_bytes;
// Check for failures
if ( status & USB_TD_DTD_TOKEN_STATUS_HALTED
|| status & USB_TD_DTD_TOKEN_STATUS_BUFFER_ERROR
|| status & USB_TD_DTD_TOKEN_STATUS_TRANSACTION_ERROR) {
// TODO: Uh oh, do something useful here
while (1);
}
// Still not finished
if (status & USB_TD_DTD_TOKEN_STATUS_ACTIVE)
break;
// Advance the head. We need to do this before invoking the completion
// callback as it might attempt to schedule a new transfer
queue->active = transfer->next;
usb_transfer_t* next = transfer->next;
// Invoke completion callback
unsigned int total_bytes = (transfer->td.total_bytes & USB_TD_DTD_TOKEN_TOTAL_BYTES_MASK) >> USB_TD_DTD_TOKEN_TOTAL_BYTES_SHIFT;
unsigned int transferred = transfer->maximum_length - total_bytes;
if (transfer->completion_cb)
transfer->completion_cb(transfer->user_data, transferred);
// Advance head and free transfer
free_transfer(transfer);
transfer = next;
}
}