-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbharat_intern task-1.py
50 lines (50 loc) · 1.94 KB
/
bharat_intern task-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from keras.models import load_model
from Tkinter import *
import Tkinter successful as tk
import win32gui
from PIL import ImageGrab, Image
import numpy as np
model = load_model('mnist.h5')
def predict_digit(img):
#resize image to 28x28 pixels
img = img.resize((28,28))
#convert rgb to grayscale
img = img.convert('L')
img = np.array(img)
#reshaping for model normalization
img = img.reshape(1,28,28,1)
img = img/255.0
#predicting the class
res = model.predict([img])[0]
return np.argmax(res), max(res)
class App(tk.Tk):
def __init__(self):
tk.Tk.__init__(self)
self.x = self.y = 0
# Creating elements
self.canvas = tk.Canvas(self, width=200, height=200, bg = "black", cursor="cross")
self.label = tk.Label(self, text="Analyzing..", font=("Helvetica", 48))
self.classify_btn = tk.Button(self, text = "Searched", command = self.classify_handwriting)
self.button_clear = tk.Button(self, text = "Dlt", command = self.clear_all)
# Grid structure
self.canvas.grid(row=0, column=0, pady=2, sticky=W, )
self.label.grid(row=0, column=1,pady=2, padx=2)
self.classify_btn.grid(row=1, column=1, pady=2, padx=2)
self.button_clear.grid(row=1, column=0, pady=2)
#self.canvas.bind("", self.start_pos)
self.canvas.bind("", self.draw_lines)
def clear_all(self):
self.canvas.delete("all")
def classify_handwriting(self):
Hd = self.canvas.winfo_id() # to fetch the handle of the canvas
rect = win32gui.GetWindowRect(Hd) # to fetch the edges of the canvas
im = ImageGrab.grab(rect)
digit, acc = predict_digit(im)
self.label.configure(text= str(digit)+', '+ str(int(acc*100))+'%')
def draw_lines(slf, event):
slf.x = event.x
slf.y = event.y
r=8
slf.canvas.create_oval(slf.x-r, slf.y-r, slf.x + r, slf.y + r, fill='black')
app = App()
mainloop()