-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nn_conv2d.py
40 lines (29 loc) · 911 Bytes
/
test_nn_conv2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=64)
class M2(nn.Module):
def __init__(self):
super(M2, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 3, stride=1, padding=0)
def forward(self, x):
x = self.conv1(x)
return x
m = M2()
print(m)
writer = SummaryWriter("logs")
i = 0
for data in dataloader:
imgs, targets = data
output = m(imgs)
# print(imgs.shape)
# print(output.shape)
output = torch.reshape(output, (-1, 3, 30, 30))
writer.add_images("input", imgs, i)
writer.add_images("output", output, i)
i += 1
writer.close()