forked from johnnewto/MauiTracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mot_sort_2.py
424 lines (360 loc) · 15.2 KB
/
mot_sort_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""
SORT: A Simple, Online and Realtime Tracker
Copyright (C) 2016-2020 Alex Bewley [email protected]
https://github.com/abewley/sort
"""
from __future__ import print_function
import numpy as np
from filterpy.kalman import KalmanFilter
import cv2
def linear_assignment(cost_matrix):
try:
import lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True)
return np.array([[y[i], i] for i in x if i >= 0]) #
except ImportError:
from scipy.optimize import linear_sum_assignment
x, y = linear_sum_assignment(cost_matrix)
return np.array(list(zip(x, y)))
def iou_batch(bb_test, bb_gt):
"""
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
"""
bb_gt = np.expand_dims(bb_gt, 0)
bb_test = np.expand_dims(bb_test, 1)
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
return (o)
def convert_bbox_to_z(bbox):
"""
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
the aspect ratio
"""
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w / 2.
y = bbox[1] + h / 2.
s = w * h # scale is just area
r = w / float(h)
return np.array([x, y, s, r]).reshape((4, 1))
def convert_x_to_bbox(x, score=None):
"""
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
"""
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if (score == None):
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
else:
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))
# def convert_xywh2xyxy(xywh, score=None):
# """
# Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
# [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
# """
#
# if len(xywh.shape) == 2:
# x = xywh[:, 0] + xywh[:, 2]
# y = xywh[:, 1] + xywh[:, 3]
# xyxy = np.concatenate((xywh[:, 0:2], x[:, None], y[:, None]), axis=1).astype('int')
# return xyxy
# if len(xywh.shape) == 1:
# x, y, w, h = xywh
# xr = x + w
# yb = y + h
# return np.array([x, y, xr, yb]).astype('int')
class KalmanBoxTracker(object):
"""
This class represents the internal state of individual tracked objects observed as bbox.
Your job as a designer will be to design the state (x,P), the process (F, Q), the measurement (z, R),
and the measurement function (H).
If the system has control inputs, such as a robot, you will also design B and u.
"""
count = 0
def __init__(self, bbox):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
# self.s = Saver(self.kf)
self.kf.F = np.array(
[[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
self.kf.H = np.array(
[[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
self.kf.R[2:, 2:] *= 10.
self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1, -1] *= 0.01
self.kf.Q[4:, 4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
self.score = 0
def update(self, bbox, score=0):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))
self.score = score
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if ((self.kf.x[6] + self.kf.x[2]) <= 0):
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if (self.time_since_update > 0):
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate.
"""
return convert_x_to_bbox(self.kf.x)
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if (len(trackers) == 0):
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int)
iou_matrix = iou_batch(detections, trackers)
if min(iou_matrix.shape) > 0:
a = (iou_matrix > iou_threshold).astype(np.int32)
if a.sum(1).max() == 1 and a.sum(0).max() == 1:
matched_indices = np.stack(np.where(a), axis=1)
else:
matched_indices = linear_assignment(-iou_matrix)
else:
matched_indices = np.empty(shape=(0, 2))
unmatched_detections = []
for d, det in enumerate(detections):
if (d not in matched_indices[:, 0]):
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if (t not in matched_indices[:, 1]):
unmatched_trackers.append(t)
# filter out matched with low IOU
matches = []
for m in matched_indices:
if (iou_matrix[m[0], m[1]] < iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if (len(matches) == 0):
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class Sort(object):
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.iou_threshold = iou_threshold
self.trackers = []
self.frame_count = 0
def update(self, dets=np.empty((0, 5)), scores=np.zeros(5), shift=(0,0)):
"""
Params:
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
self.frame_count += 1
# get predicted locations from existing trackers.
trks = np.zeros((len(self.trackers), 5))
to_del = []
ret = []
shift = np.array([[shift[0]], [shift[1]]])
for t, trk in enumerate(trks):
self.trackers[t].kf.x[:2] += shift
self.trackers[t].kf.x_post[:2] += shift
self.trackers[t].kf.x_prior[:2] += shift
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if np.any(np.isnan(pos)):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)
# update matched trackers with assigned detections
try:
for m in matched:
self.trackers[m[1]].update(dets[m[0], :], scores[m[0]])
except:
pass
# create and initialise new trackers for unmatched detections
for i in unmatched_dets:
trk = KalmanBoxTracker(dets[i, :])
self.trackers.append(trk)
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state()[0]
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
ret.append(np.concatenate((d, [trk.id + 1, trk.score])).reshape(1, -1)) # +1 as MOT benchmark requires positive
i -= 1
# remove dead tracklet
if (trk.time_since_update > self.max_age):
self.trackers.pop(i)
if (len(ret) > 0):
return np.concatenate(ret)
return np.empty((0, 6))
class Animate:
def __init__(s, dt=0.1, num=5, size=600):
s.dt = dt
s.n = num
s.size = size
s.particles = np.zeros(s.n, dtype=[("position", 'float', 2),
("velocity", 'float', 2),
("force", 'float', 2),
("value", 'int', ),
("del_value", 'int', )])
s.particles["position"] = np.random.uniform(0, 1, (s.n, 2))
s.particles["position"] = 0.5 * np.ones((s.n, 2))
s.particles["position"][0] = 0.5 * np.ones((1, 2))
# s.particles["velocity"] = np.zeros((s.n, 2))
s.particles["velocity"] = np.random.randint(-2, 2, (s.n, 2)) * s.dt
# s.particles["velocity"][-1] = 0 * np.ones((1, 2))
s.particles["value"] = 128 * np.ones(s.n, int)
s.particles["del_value"] = 5 * np.ones(s.n, int)
s.image = np.zeros((size, size), dtype=np.uint8) + 1
def update(s, shift=(0,0)):
# if frame_number < 5:
# s.particles["force"] = np.round(np.random.uniform(-2, 2., (s.n, 2)))
# s.particles["velocity"] = s.particles["velocity"] + s.particles["force"] * s.dt
# s.particles["velocity"] = np.clip(s.particles["velocity"], -0.1, 0.1)
# s.particles["velocity"] = np.random.randint(-1,1,(s.n, 2))*0.1
# s.particles["velocity"][0] = 0 * np.ones((1, 2))
# print( s.particles["velocity"] )
s.particles["del_value"] = np.random.uniform(-2, 2., (s.n))
shift = np.array([shift[0], shift[1]])/s.size
s.particles["position"] += shift
s.particles["position"] = s.particles["position"] + s.particles["velocity"] * s.dt
s.particles["position"] = s.particles["position"] % 1
# s.particles["value"] = s.particles["value"] + (s.particles["del_value"] * 5).astype(int)
# s.particles["value"] = np.clip(s.particles["value"], 10,255)
s.image = np.zeros((s.size, s.size), dtype=np.uint8) + 1
for particle in s.particles:
r, c = particle["position"]
# r = min(int(r * s.size), s.size-5)
# c = min(int(c * s.size), s.size-5)
# s.image[r:r + 5, c:c + 5] = 255
color = int(particle["value"])
r, c = int(r * s.size), int(c* s.size)
s.image = cv2.circle(s.image, (c, r), 1, color, -1)
if __name__ == '__main__':
import matplotlib.pyplot as plt
from numpy.random import randn
from filterpy.common import Saver
from filterpy.stats import plot_covariance
from book_plots import plot_filter
from book_plots import plot_measurements
from book_plots import plot_residual_limits, set_labels
def plot_residuals(xs, data, col, title, y_label, stds=1):
res = xs[:, col] - data.x[:, col].squeeze()
plt.plot(res)
plot_residual_limits(data.P[:, col, col], stds)
set_labels(title, 'frame', y_label)
def main():
NUM_PNTS = 2
total_time = 0.0
total_frames = 0
colours = np.random.rand(32, 3) # used only for display
from skimage.feature.peak import peak_local_max
animate = Animate(0.1, num=NUM_PNTS, size=500)
animate.particles["velocity"] = np.ones((1,2)) * 0.1
animate.particles["velocity"][0] = np.zeros((1, 2))
animate.particles["position"][0] = np.ones((1,2)) * 0.75
mot_tracker = Sort(max_age=3,
min_hits=3,
iou_threshold=0.3)
xs = []
zs = []
for i in range(180):
animate.update(shift=(0,0))
image = cv2.cvtColor(animate.image.copy(), cv2.COLOR_GRAY2BGR)
# pks = peak_local_max(cmo, min_distance=8, threshold_abs=10, num_peaks=10)
pks = peak_local_max(animate.image, min_distance=20, threshold_abs=10, num_peaks=NUM_PNTS*2)
bboxes = [np.array([c,r, 10,10], 'int32') for (r, c) in pks]
confidences = [animate.image[r,c]/255 for (r,c) in pks]
class_ids = [1]*pks.shape[0]
try:
xs.append([pks[0,1], pks[0,0]])
pks = pks + randn(pks.shape[0], pks.shape[1]) * 0.2
dets = np.array([convert_x_to_bbox([c, r, 900, 1], 0.9).squeeze() for (r, c) in pks])
if i == 0:
dets_1 = dets.copy()
trackers = mot_tracker.update(dets, shift=(0,0))
try:
z = convert_bbox_to_z(dets[0])
zs.append(z)
except:
pass
for d in trackers:
color = colours[int(d[4]) % 32, :] * 255
color = (int(color[0]), int(color[1]), int(color[2]))
rect = d[:4].astype('int32')
image = cv2.rectangle(image, (rect[0], rect[1]), (rect[2], rect[3]), color, 2)
except:
pass
cv2.imshow('frame', image)
k = cv2.waitKey(10)
if k == ord('q') or k == 27:
break
# run batch filter again on zs
xs = np.array(xs)
zs = np.array(zs)
# initialise filter again
bb = dets_1.squeeze()
kf = KalmanBoxTracker(bb).kf
s = Saver(kf)
mu, cov, _, _ = kf.batch_filter(zs, saver=s)
s.to_array()
for x, P in zip(mu, cov):
# covariance of x and y
cov = np.array([[P[0, 0], P[2, 0]],
[P[0, 2], P[2, 2]]])
mean = (x[0, 0], x[1, 0])
plot_covariance(mean, cov=cov, fc='g', std=3, alpha=0.5)
# plot results
plot_filter(mu[:, 0], mu[:, 1])
plot_measurements(zs[:, 0], zs[:, 1])
plt.legend(loc=2)
# plt.xlim(0, 20)
plt.show()
stds = 3
title = f'First Order Position Residuals({stds}$\sigma$)'
plot_residuals(xs, s, 0, title=title,y_label='pixels', stds=stds)
# plot_measurements(zs[:, 0], zs[:, 1])
plt.show()
main()