forked from Windxy/YOLO-F
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
292 lines (252 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#-------------------------------------#
# 对数据集进行训练
#-------------------------------------#
import numpy as np
import time
import torch
from torch.autograd import Variable
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from utils.dataloader import yolo_dataset_collate, YoloDataset
from nets.yolo_f import YoloBody
from nets.yolo_training import YOLOLoss,Generator
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
temp = 999999.99
class Logger(object):
def __init__(self, filename="log.txt"):
self.terminal = sys.stdout
self.log = open(filename, "a")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
import sys
sys.stdout = Logger()
#---------------------------------------------------#
# 获得类和先验框
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1,3,2])[::-1,:,:]
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epoch,cuda):
global temp
total_loss = 0
val_loss = 0
start_time = time.time()
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor)).cuda()
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
else:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor))
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
optimizer.zero_grad()
outputs = net(images)
losses = []
for i in range(len(outputs)):
loss_item = yolo_losses[i](outputs[i], targets)
losses.append(loss_item[0])
loss = sum(losses)
loss.backward()
optimizer.step()
total_loss += loss
waste_time = time.time() - start_time
pbar.set_postfix(**{'total_loss': total_loss.item() / (iteration + 1),
'lr' : get_lr(optimizer),
'step/s' : waste_time})
pbar.update(1)
start_time = time.time()
# print('Start Validation')
with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(genval):
if iteration >= epoch_size_val:
break
images_val, targets_val = batch[0], batch[1]
with torch.no_grad():
if cuda:
images_val = Variable(torch.from_numpy(images_val).type(torch.FloatTensor)).cuda()
targets_val = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets_val]
else:
images_val = Variable(torch.from_numpy(images_val).type(torch.FloatTensor))
targets_val = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets_val]
optimizer.zero_grad()
outputs = net(images_val)
losses = []
for i in range(len(outputs)):
loss_item = yolo_losses[i](outputs[i], targets_val)
losses.append(loss_item[0])
loss = sum(losses)
val_loss += loss
pbar.set_postfix(**{'total_loss': val_loss.item() / (iteration + 1)})
pbar.update(1)
# print('Finish Validation')
print('Epoch:'+ str(epoch+1) + '/' + str(Epoch) + ' Total Loss: %.4f || Val Loss: %.4f ' % (total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
# print('Saving state, iter:', str(epoch+1))
if total_loss/(epoch_size+1)<temp:
torch.save(model.state_dict(), 'logs/Epoch%d-Total_Loss%.4f-Val_Loss%.4f.pth'%((epoch+1),total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
temp = total_loss/(epoch_size+1)
#----------------------------------------------------#
# 检测精度mAP和pr曲线计算参考视频
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
if __name__ == "__main__":
'''输出重定向'''
#-------------------------------#
# 输入的shape大小
# 显存比较小可以使用416x416
# 显存比较大可以使用608x608
#-------------------------------#
input_shape = (416,416)
#-------------------------------#
# tricks的使用设置
#-------------------------------#
Cosine_lr = False
mosaic = True
# 用于设定是否使用cuda
Cuda = True
smoooth_label = 0
#-------------------------------#
# Dataloder的使用
#-------------------------------#
Use_Data_Loader = True
annotation_path = '2007_train.txt'
#-------------------------------#
# 获得先验框和类
#-------------------------------#
anchors_path = 'model_data/yolo_anchors.txt'
classes_path = 'model_data/voc_classes.txt'
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
num_classes = len(class_names)
# print(len(anchors[0]))
# 创建模型
model = YoloBody(len(anchors[0]),num_classes)
#-------------------------------------------#
# 权值文件的下载请看README
#-------------------------------------------#
pretrain = False
if pretrain:
model_path = "logs/Epoch9-Total_Loss19.9503-Val_Loss12.4815.pth"
# 加快模型训练的效率
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_dict = model.state_dict()
pretrained_dict = torch.load(model_path, map_location=device)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('加载模型成功!')
else:
print("不加载模型")
net = model.train()
if Cuda:
net = torch.nn.DataParallel(model)
cudnn.benchmark = True
net = net.cuda()
# 建立loss函数
yolo_losses = []
for i in range(3):
yolo_losses.append(YOLOLoss(np.reshape(anchors,[-1,2]),num_classes, \
(input_shape[1], input_shape[0]), smoooth_label, Cuda))
# 0.1用于验证,0.9用于训练
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# Init_Epoch为起始世代
# Freeze_Epoch为冻结训练的世代
# Epoch总训练世代
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
if False:
lr = 1e-3
Batch_size = 8
Init_Epoch = 0
Freeze_Epoch = 50
optimizer = optim.Adam(net.parameters(),lr,weight_decay=5e-4)
if Cosine_lr:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5)
else:
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.9)
if Use_Data_Loader:
train_dataset = YoloDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic)
val_dataset = YoloDataset(lines[num_train:], (input_shape[0], input_shape[1]), mosaic=False)
gen = DataLoader(train_dataset, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
gen_val = DataLoader(val_dataset, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
else:
gen = Generator(Batch_size, lines[:num_train],
(input_shape[0], input_shape[1])).generate(mosaic = mosaic)
gen_val = Generator(Batch_size, lines[num_train:],
(input_shape[0], input_shape[1])).generate(mosaic = False)
epoch_size = max(1, num_train//Batch_size)
epoch_size_val = num_val//Batch_size
#------------------------------------#
# 冻结一定部分训练
#------------------------------------#
for param in model.backbone.parameters():
param.requires_grad = False
for epoch in range(Init_Epoch,Freeze_Epoch):
fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,gen_val,Freeze_Epoch,Cuda)
lr_scheduler.step()
if True:
lr = 1e-3
Batch_size = 2
Freeze_Epoch = 0
Unfreeze_Epoch = 150
optimizer = optim.Adam(net.parameters(),lr,weight_decay=5e-5)
if Cosine_lr:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=8, eta_min=1e-5)
else:
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=3,gamma=0.9)
if Use_Data_Loader:
train_dataset = YoloDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic)
val_dataset = YoloDataset(lines[num_train:], (input_shape[0], input_shape[1]), mosaic=False)
gen = DataLoader(train_dataset, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
gen_val = DataLoader(val_dataset, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
else:
gen = Generator(Batch_size, lines[:num_train],
(input_shape[0], input_shape[1])).generate(mosaic = mosaic)
gen_val = Generator(Batch_size, lines[num_train:],
(input_shape[0], input_shape[1])).generate(mosaic = False)
epoch_size = max(1, num_train//Batch_size)
epoch_size_val = num_val//Batch_size
#------------------------------------#
# 解冻后训练
#------------------------------------#
for param in model.backbone.parameters():
param.requires_grad = True
for epoch in range(Freeze_Epoch,Unfreeze_Epoch):
fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,gen_val,Unfreeze_Epoch,Cuda)
lr_scheduler.step()