-
Notifications
You must be signed in to change notification settings - Fork 270
/
Copy pathtest_preprocess.py
206 lines (174 loc) · 6.55 KB
/
test_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import subprocess
import sys
from pathlib import Path
import ase.io
import numpy as np
import pytest
import yaml
from ase.atoms import Atoms
pytest_mace_dir = Path(__file__).parent.parent
preprocess_data = Path(__file__).parent.parent / "mace" / "cli" / "preprocess_data.py"
@pytest.fixture(name="sample_configs")
def fixture_sample_configs():
water = Atoms(
numbers=[8, 1, 1],
positions=[[0, -2.0, 0], [1, 0, 0], [0, 1, 0]],
cell=[4] * 3,
pbc=[True] * 3,
)
configs = [
Atoms(numbers=[8], positions=[[0, 0, 0]], cell=[6] * 3),
Atoms(numbers=[1], positions=[[0, 0, 0]], cell=[6] * 3),
]
configs[0].info["REF_energy"] = 0.0
configs[0].info["config_type"] = "IsolatedAtom"
configs[1].info["REF_energy"] = 0.0
configs[1].info["config_type"] = "IsolatedAtom"
np.random.seed(5)
for _ in range(10):
c = water.copy()
c.positions += np.random.normal(0.1, size=c.positions.shape)
c.info["REF_energy"] = np.random.normal(0.1)
c.new_array("REF_forces", np.random.normal(0.1, size=c.positions.shape))
c.info["REF_stress"] = np.random.normal(0.1, size=6)
configs.append(c)
return configs
def test_preprocess_data(tmp_path, sample_configs):
ase.io.write(tmp_path / "sample.xyz", sample_configs)
preprocess_params = {
"train_file": tmp_path / "sample.xyz",
"r_max": 5.0,
"config_type_weights": "{'Default':1.0}",
"num_process": 2,
"valid_fraction": 0.1,
"h5_prefix": tmp_path / "preprocessed_",
"compute_statistics": None,
"seed": 42,
"energy_key": "REF_energy",
"forces_key": "REF_forces",
"stress_key": "REF_stress",
}
run_env = os.environ.copy()
sys.path.insert(0, str(Path(__file__).parent.parent))
run_env["PYTHONPATH"] = ":".join(sys.path)
print("DEBUG subprocess PYTHONPATH", run_env["PYTHONPATH"])
cmd = (
sys.executable
+ " "
+ str(preprocess_data)
+ " "
+ " ".join(
[
(f"--{k}={v}" if v is not None else f"--{k}")
for k, v in preprocess_params.items()
]
)
)
p = subprocess.run(cmd.split(), env=run_env, check=True)
assert p.returncode == 0
# Check if the output files are created
assert (tmp_path / "preprocessed_train").is_dir()
assert (tmp_path / "preprocessed_val").is_dir()
assert (tmp_path / "preprocessed_statistics.json").is_file()
# Check if the correct number of files are created
train_files = list((tmp_path / "preprocessed_train").glob("*.h5"))
val_files = list((tmp_path / "preprocessed_val").glob("*.h5"))
assert len(train_files) == preprocess_params["num_process"]
assert len(val_files) == preprocess_params["num_process"]
# Example of checking statistics file content:
import json
with open(tmp_path / "preprocessed_statistics.json", "r", encoding="utf-8") as f:
statistics = json.load(f)
assert "atomic_energies" in statistics
assert "avg_num_neighbors" in statistics
assert "mean" in statistics
assert "std" in statistics
assert "atomic_numbers" in statistics
assert "r_max" in statistics
# Example of checking H5 file content:
import h5py
with h5py.File(train_files[0], "r") as f:
assert "config_batch_0" in f
config = f["config_batch_0"]["config_0"]
assert "atomic_numbers" in config
assert "positions" in config
assert "energy" in config["properties"]
assert "forces" in config["properties"]
original_energies = [
config.info["REF_energy"]
for config in sample_configs[2:]
if "REF_energy" in config.info
]
original_forces = [
config.arrays["REF_forces"]
for config in sample_configs[2:]
if "REF_forces" in config.arrays
]
h5_energies = []
h5_forces = []
for train_file in train_files:
with h5py.File(train_file, "r") as f:
for _, batch in f.items():
for config_key in batch.keys():
config = batch[config_key]
assert "atomic_numbers" in config
assert "positions" in config
assert "energy" in config["properties"]
assert "forces" in config["properties"]
h5_energies.append(config["properties"]["energy"][()])
h5_forces.append(config["properties"]["forces"][()])
for val_file in val_files:
with h5py.File(val_file, "r") as f:
for _, batch in f.items():
for config_key in batch.keys():
config = batch[config_key]
h5_energies.append(config["properties"]["energy"][()])
h5_forces.append(config["properties"]["forces"][()])
print("Original energies", original_energies)
print("H5 energies", h5_energies)
print("Original forces", original_forces)
print("H5 forces", h5_forces)
original_energies.sort()
h5_energies.sort()
original_forces = np.concatenate(original_forces).flatten()
h5_forces = np.concatenate(h5_forces).flatten()
original_forces.sort()
h5_forces.sort()
# Compare energies and forces
np.testing.assert_allclose(original_energies, h5_energies, rtol=1e-5, atol=1e-8)
np.testing.assert_allclose(original_forces, h5_forces, rtol=1e-5, atol=1e-8)
print("All checks passed successfully!")
def test_preprocess_config(tmp_path, sample_configs):
ase.io.write(tmp_path / "sample.xyz", sample_configs)
preprocess_params = {
"train_file": str(tmp_path / "sample.xyz"),
"r_max": 5.0,
"config_type_weights": "{'Default':1.0}",
"num_process": 2,
"valid_fraction": 0.1,
"h5_prefix": str(tmp_path / "preprocessed_"),
"compute_statistics": None,
"seed": 42,
"energy_key": "REF_energy",
"forces_key": "REF_forces",
"stress_key": "REF_stress",
}
filename = tmp_path / "config.yaml"
with open(filename, "w", encoding="utf-8") as file:
yaml.dump(preprocess_params, file)
run_env = os.environ.copy()
sys.path.insert(0, str(Path(__file__).parent.parent))
run_env["PYTHONPATH"] = ":".join(sys.path)
print("DEBUG subprocess PYTHONPATH", run_env["PYTHONPATH"])
cmd = (
sys.executable
+ " "
+ str(preprocess_data)
+ " "
+ "--config"
+ " "
+ str(filename)
)
p = subprocess.run(cmd.split(), env=run_env, check=True)
assert p.returncode == 0