-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmustango.py
204 lines (171 loc) · 6.87 KB
/
mustango.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import json
import torch
import numpy as np
from huggingface_hub import snapshot_download
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from transformers import AutoTokenizer, T5ForConditionalGeneration
from modelling_deberta_v2 import DebertaV2ForTokenClassificationRegression
from diffusers import DDPMScheduler
from models import MusicAudioDiffusion
class MusicFeaturePredictor:
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
self.beats_tokenizer = AutoTokenizer.from_pretrained(
"microsoft/deberta-v3-large",
cache_dir=cache_dir,
local_files_only=local_files_only,
)
self.beats_model = DebertaV2ForTokenClassificationRegression.from_pretrained(
"microsoft/deberta-v3-large",
cache_dir=cache_dir,
local_files_only=local_files_only,
)
self.beats_model.eval()
self.beats_model.to(device)
beats_ckpt = f"{path}/beats/microsoft-deberta-v3-large.pt"
beats_weight = torch.load(beats_ckpt, map_location="cpu")
self.beats_model.load_state_dict(beats_weight)
self.chords_tokenizer = AutoTokenizer.from_pretrained(
"google/flan-t5-large",
cache_dir=cache_dir,
local_files_only=local_files_only,
)
self.chords_model = T5ForConditionalGeneration.from_pretrained(
"google/flan-t5-large",
cache_dir=cache_dir,
local_files_only=local_files_only,
)
self.chords_model.eval()
self.chords_model.to(device)
chords_ckpt = f"{path}/chords/flan-t5-large.bin"
chords_weight = torch.load(chords_ckpt, map_location="cpu")
self.chords_model.load_state_dict(chords_weight)
def generate_beats(self, prompt):
tokenized = self.beats_tokenizer(
prompt, max_length=512, padding=True, truncation=True, return_tensors="pt"
)
tokenized = {k: v.to(self.beats_model.device) for k, v in tokenized.items()}
with torch.no_grad():
out = self.beats_model(**tokenized)
max_beat = (
1 + torch.argmax(out["logits"][:, 0, :], -1).detach().cpu().numpy()
).tolist()[0]
intervals = (
out["values"][:, :, 0]
.detach()
.cpu()
.numpy()
.astype("float32")
.round(4)
.tolist()
)
intervals = np.cumsum(intervals)
predicted_beats_times = []
for t in intervals:
if t < 10:
predicted_beats_times.append(round(t, 2))
else:
break
predicted_beats_times = list(np.array(predicted_beats_times)[:50])
if len(predicted_beats_times) == 0:
predicted_beats = [[], []]
else:
beat_counts = []
for i in range(len(predicted_beats_times)):
beat_counts.append(float(1.0 + np.mod(i, max_beat)))
predicted_beats = [[predicted_beats_times, beat_counts]]
return max_beat, predicted_beats_times, predicted_beats
def generate(self, prompt):
max_beat, predicted_beats_times, predicted_beats = self.generate_beats(prompt)
chords_prompt = "Caption: {} \\n Timestamps: {} \\n Max Beat: {}".format(
prompt,
" , ".join([str(round(t, 2)) for t in predicted_beats_times]),
max_beat,
)
tokenized = self.chords_tokenizer(
chords_prompt,
max_length=512,
padding=True,
truncation=True,
return_tensors="pt",
)
tokenized = {k: v.to(self.chords_model.device) for k, v in tokenized.items()}
generated_chords = self.chords_model.generate(
input_ids=tokenized["input_ids"],
attention_mask=tokenized["attention_mask"],
min_length=8,
max_length=128,
num_beams=5,
early_stopping=True,
num_return_sequences=1,
)
generated_chords = self.chords_tokenizer.decode(
generated_chords[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
).split(" n ")
predicted_chords, predicted_chords_times = [], []
for item in generated_chords:
c, ct = item.split(" at ")
predicted_chords.append(c)
predicted_chords_times.append(float(ct))
return predicted_beats, predicted_chords, predicted_chords_times
class Mustango:
def __init__(
self,
name="declare-lab/mustango",
device="cuda:0",
cache_dir=None,
local_files_only=False,
):
path = snapshot_download(repo_id=name, cache_dir=cache_dir)
self.music_model = MusicFeaturePredictor(
path, device, cache_dir=cache_dir, local_files_only=local_files_only
)
vae_config = json.load(open(f"{path}/configs/vae_config.json"))
stft_config = json.load(open(f"{path}/configs/stft_config.json"))
main_config = json.load(open(f"{path}/configs/main_config.json"))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
self.model = MusicAudioDiffusion(
main_config["text_encoder_name"],
main_config["scheduler_name"],
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
).to(device)
vae_weights = torch.load(
f"{path}/vae/pytorch_model_vae.bin", map_location=device
)
stft_weights = torch.load(
f"{path}/stft/pytorch_model_stft.bin", map_location=device
)
main_weights = torch.load(
f"{path}/ldm/pytorch_model_ldm.bin", map_location=device
)
self.vae.load_state_dict(vae_weights)
self.stft.load_state_dict(stft_weights)
self.model.load_state_dict(main_weights)
print("Successfully loaded checkpoint from:", name)
self.vae.eval()
self.stft.eval()
self.model.eval()
self.scheduler = DDPMScheduler.from_pretrained(
main_config["scheduler_name"], subfolder="scheduler"
)
def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
"""Genrate music for a single prompt string."""
with torch.no_grad():
beats, chords, chords_times = self.music_model.generate(prompt)
latents = self.model.inference(
[prompt],
beats,
[chords],
[chords_times],
self.scheduler,
steps,
guidance,
samples,
disable_progress,
)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave[0]