forked from huangjuite/PacmanDQN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame.py
781 lines (668 loc) · 25.5 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
# game.py
# -------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
# game.py
# -------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
from util import *
import time
import os
import traceback
import sys
#######################
# Parts worth reading #
#######################
class Agent:
"""
An agent must define a getAction method, but may also define the
following methods which will be called if they exist:
def registerInitialState(self, state): # inspects the starting state
"""
def __init__(self, index=0):
self.index = index
def getAction(self, state):
"""
The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
must return an action from Directions.{North, South, East, West, Stop}
"""
raiseNotDefined()
class Directions:
NORTH = 'North'
SOUTH = 'South'
EAST = 'East'
WEST = 'West'
STOP = 'Stop'
LEFT = {NORTH: WEST,
SOUTH: EAST,
EAST: NORTH,
WEST: SOUTH,
STOP: STOP}
RIGHT = dict([(y, x) for x, y in list(LEFT.items())])
REVERSE = {NORTH: SOUTH,
SOUTH: NORTH,
EAST: WEST,
WEST: EAST,
STOP: STOP}
class Configuration:
"""
A Configuration holds the (x,y) coordinate of a character, along with its
traveling direction.
The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases
horizontally and y increases vertically. Therefore, north is the direction of increasing y, or (0,1).
"""
def __init__(self, pos, direction):
self.pos = pos
self.direction = direction
def getPosition(self):
return (self.pos)
def getDirection(self):
return self.direction
def isInteger(self):
x, y = self.pos
return x == int(x) and y == int(y)
def __eq__(self, other):
if other == None:
return False
return (self.pos == other.pos and self.direction == other.direction)
def __hash__(self):
x = hash(self.pos)
y = hash(self.direction)
return hash(x + 13 * y)
def __str__(self):
return "(x,y)=" + str(self.pos) + ", " + str(self.direction)
def generateSuccessor(self, vector):
"""
Generates a new configuration reached by translating the current
configuration by the action vector. This is a low-level call and does
not attempt to respect the legality of the movement.
Actions are movement vectors.
"""
x, y = self.pos
dx, dy = vector
direction = Actions.vectorToDirection(vector)
if direction == Directions.STOP:
direction = self.direction # There is no stop direction
return Configuration((x + dx, y + dy), direction)
class AgentState:
"""
AgentStates hold the state of an agent (configuration, speed, scared, etc).
"""
def __init__(self, startConfiguration, isPacman):
self.start = startConfiguration
self.configuration = startConfiguration
self.isPacman = isPacman
self.scaredTimer = 0
self.numCarrying = 0
self.numReturned = 0
def __str__(self):
if self.isPacman:
return "Pacman: " + str(self.configuration)
else:
return "Ghost: " + str(self.configuration)
def __eq__(self, other):
if other == None:
return False
return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer
def __hash__(self):
return hash(hash(self.configuration) + 13 * hash(self.scaredTimer))
def copy(self):
state = AgentState(self.start, self.isPacman)
state.configuration = self.configuration
state.scaredTimer = self.scaredTimer
state.numCarrying = self.numCarrying
state.numReturned = self.numReturned
return state
def getPosition(self):
if self.configuration == None:
return None
return self.configuration.getPosition()
def getDirection(self):
return self.configuration.getDirection()
class Grid:
"""
A 2-dimensional array of objects backed by a list of lists. Data is accessed
via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal,
y vertical and the origin (0,0) in the bottom left corner.
The __str__ method constructs an output that is oriented like a pacman board.
"""
def __init__(self, width, height, initialValue=False, bitRepresentation=None):
if initialValue not in [False, True]:
raise Exception('Grids can only contain booleans')
self.CELLS_PER_INT = 30
self.width = width
self.height = height
self.data = [[initialValue for y in range(
height)] for x in range(width)]
if bitRepresentation:
self._unpackBits(bitRepresentation)
def __getitem__(self, i):
return self.data[i]
def __setitem__(self, key, item):
self.data[key] = item
def __str__(self):
out = [[str(self.data[x][y])[0] for x in range(self.width)]
for y in range(self.height)]
out.reverse()
return '\n'.join([''.join(x) for x in out])
def __eq__(self, other):
if other == None:
return False
return self.data == other.data
def __hash__(self):
# return hash(str(self))
base = 1
h = 0
for l in self.data:
for i in l:
if i:
h += base
base *= 2
return hash(h)
def copy(self):
g = Grid(self.width, self.height)
g.data = [x[:] for x in self.data]
return g
def deepCopy(self):
return self.copy()
def shallowCopy(self):
g = Grid(self.width, self.height)
g.data = self.data
return g
def count(self, item=True):
return sum([x.count(item) for x in self.data])
def asList(self, key=True):
list = []
for x in range(self.width):
for y in range(self.height):
if self[x][y] == key:
list.append((x, y))
return list
def packBits(self):
"""
Returns an efficient int list representation
(width, height, bitPackedInts...)
"""
bits = [self.width, self.height]
currentInt = 0
for i in range(self.height * self.width):
bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1
x, y = self._cellIndexToPosition(i)
if self[x][y]:
currentInt += 2 ** bit
if (i + 1) % self.CELLS_PER_INT == 0:
bits.append(currentInt)
currentInt = 0
bits.append(currentInt)
return tuple(bits)
def _cellIndexToPosition(self, index):
x = index / self.height
y = index % self.height
return x, y
def _unpackBits(self, bits):
"""
Fills in data from a bit-level representation
"""
cell = 0
for packed in bits:
for bit in self._unpackInt(packed, self.CELLS_PER_INT):
if cell == self.width * self.height:
break
x, y = self._cellIndexToPosition(cell)
self[x][y] = bit
cell += 1
def _unpackInt(self, packed, size):
bools = []
if packed < 0:
raise ValueError("must be a positive integer")
for i in range(size):
n = 2 ** (self.CELLS_PER_INT - i - 1)
if packed >= n:
bools.append(True)
packed -= n
else:
bools.append(False)
return bools
def reconstituteGrid(bitRep):
if not isinstance(bitRep, type((1, 2))):
return bitRep
width, height = bitRep[:2]
return Grid(width, height, bitRepresentation=bitRep[2:])
####################################
# Parts you shouldn't have to read #
####################################
class Actions:
"""
A collection of static methods for manipulating move actions.
"""
# Directions
_directions = {Directions.NORTH: (0, 1),
Directions.SOUTH: (0, -1),
Directions.EAST: (1, 0),
Directions.WEST: (-1, 0),
Directions.STOP: (0, 0)}
_directionsAsList = list(_directions.items())
TOLERANCE = .001
def reverseDirection(action):
if action == Directions.NORTH:
return Directions.SOUTH
if action == Directions.SOUTH:
return Directions.NORTH
if action == Directions.EAST:
return Directions.WEST
if action == Directions.WEST:
return Directions.EAST
return action
reverseDirection = staticmethod(reverseDirection)
def vectorToDirection(vector):
dx, dy = vector
if dy > 0:
return Directions.NORTH
if dy < 0:
return Directions.SOUTH
if dx < 0:
return Directions.WEST
if dx > 0:
return Directions.EAST
return Directions.STOP
vectorToDirection = staticmethod(vectorToDirection)
def directionToVector(direction, speed=1.0):
dx, dy = Actions._directions[direction]
return (dx * speed, dy * speed)
directionToVector = staticmethod(directionToVector)
def getPossibleActions(config, walls):
possible = []
x, y = config.pos
x_int, y_int = int(x + 0.5), int(y + 0.5)
# In between grid points, all agents must continue straight
if (abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE):
return [config.getDirection()]
for dir, vec in Actions._directionsAsList:
dx, dy = vec
next_y = y_int + dy
next_x = x_int + dx
if not walls[next_x][next_y]:
possible.append(dir)
return possible
getPossibleActions = staticmethod(getPossibleActions)
def getLegalNeighbors(position, walls):
x, y = position
x_int, y_int = int(x + 0.5), int(y + 0.5)
neighbors = []
for dir, vec in Actions._directionsAsList:
dx, dy = vec
next_x = x_int + dx
if next_x < 0 or next_x == walls.width:
continue
next_y = y_int + dy
if next_y < 0 or next_y == walls.height:
continue
if not walls[next_x][next_y]:
neighbors.append((next_x, next_y))
return neighbors
getLegalNeighbors = staticmethod(getLegalNeighbors)
def getSuccessor(position, action):
dx, dy = Actions.directionToVector(action)
x, y = position
return (x + dx, y + dy)
getSuccessor = staticmethod(getSuccessor)
class GameStateData:
"""
"""
def __init__(self, prevState=None):
"""
Generates a new data packet by copying information from its predecessor.
"""
if prevState != None:
self.food = prevState.food.shallowCopy()
self.capsules = prevState.capsules[:]
self.agentStates = self.copyAgentStates(prevState.agentStates)
self.layout = prevState.layout
self._eaten = prevState._eaten
self.score = prevState.score
self._foodEaten = None
self._foodAdded = None
self._capsuleEaten = None
self._agentMoved = None
self._lose = False
self._win = False
self.scoreChange = 0
def deepCopy(self):
state = GameStateData(self)
state.food = self.food.deepCopy()
state.layout = self.layout.deepCopy()
state._agentMoved = self._agentMoved
state._foodEaten = self._foodEaten
state._foodAdded = self._foodAdded
state._capsuleEaten = self._capsuleEaten
return state
def copyAgentStates(self, agentStates):
copiedStates = []
for agentState in agentStates:
copiedStates.append(agentState.copy())
return copiedStates
def __eq__(self, other):
"""
Allows two states to be compared.
"""
if other == None:
return False
# TODO Check for type of other
if not self.agentStates == other.agentStates:
return False
if not self.food == other.food:
return False
if not self.capsules == other.capsules:
return False
if not self.score == other.score:
return False
return True
def __hash__(self):
"""
Allows states to be keys of dictionaries.
"""
for i, state in enumerate(self.agentStates):
try:
int(hash(state))
except TypeError(e):
print(e)
# hash(state)
return int((hash(tuple(self.agentStates)) + 13 * hash(self.food) + 113 * hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575)
def __str__(self):
width, height = self.layout.width, self.layout.height
map = Grid(width, height)
if isinstance(self.food, type((1, 2))):
self.food = reconstituteGrid(self.food)
for x in range(width):
for y in range(height):
food, walls = self.food, self.layout.walls
map[x][y] = self._foodWallStr(food[x][y], walls[x][y])
for agentState in self.agentStates:
if agentState == None:
continue
if agentState.configuration == None:
continue
x, y = [int(i) for i in nearestPoint(agentState.configuration.pos)]
agent_dir = agentState.configuration.direction
if agentState.isPacman:
map[x][y] = self._pacStr(agent_dir)
else:
map[x][y] = self._ghostStr(agent_dir)
for x, y in self.capsules:
map[x][y] = 'o'
return str(map) + ("\nScore: %d\n" % self.score)
def _foodWallStr(self, hasFood, hasWall):
if hasFood:
return '.'
elif hasWall:
return '%'
else:
return ' '
def _pacStr(self, dir):
if dir == Directions.NORTH:
return 'v'
if dir == Directions.SOUTH:
return '^'
if dir == Directions.WEST:
return '>'
return '<'
def _ghostStr(self, dir):
return 'G'
if dir == Directions.NORTH:
return 'M'
if dir == Directions.SOUTH:
return 'W'
if dir == Directions.WEST:
return '3'
return 'E'
def initialize(self, layout, numGhostAgents):
"""
Creates an initial game state from a layout array (see layout.py).
"""
self.food = layout.food.copy()
#self.capsules = []
self.capsules = layout.capsules[:]
self.layout = layout
self.score = 0
self.scoreChange = 0
self.agentStates = []
numGhosts = 0
for isPacman, pos in layout.agentPositions:
if not isPacman:
if numGhosts == numGhostAgents:
continue # Max ghosts reached already
else:
numGhosts += 1
self.agentStates.append(AgentState(
Configuration(pos, Directions.STOP), isPacman))
self._eaten = [False for a in self.agentStates]
try:
import boinc
_BOINC_ENABLED = True
except:
_BOINC_ENABLED = False
class Game:
"""
The Game manages the control flow, soliciting actions from agents.
"""
def __init__(self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False):
self.agentCrashed = False
self.agents = agents
self.display = display
self.rules = rules
self.startingIndex = startingIndex
self.gameOver = False
self.muteAgents = muteAgents
self.catchExceptions = catchExceptions
self.moveHistory = []
self.totalAgentTimes = [0 for agent in agents]
self.totalAgentTimeWarnings = [0 for agent in agents]
self.agentTimeout = False
import io
self.agentOutput = [io.StringIO() for agent in agents]
def getProgress(self):
if self.gameOver:
return 1.0
else:
return self.rules.getProgress(self)
def _agentCrash(self, agentIndex, quiet=False):
"Helper method for handling agent crashes"
if not quiet:
traceback.print_exc()
self.gameOver = True
self.agentCrashed = True
self.rules.agentCrash(self, agentIndex)
OLD_STDOUT = None
OLD_STDERR = None
def mute(self, agentIndex):
if not self.muteAgents:
return
global OLD_STDOUT, OLD_STDERR
import io
OLD_STDOUT = sys.stdout
OLD_STDERR = sys.stderr
sys.stdout = self.agentOutput[agentIndex]
sys.stderr = self.agentOutput[agentIndex]
def unmute(self):
if not self.muteAgents:
return
global OLD_STDOUT, OLD_STDERR
# Revert stdout/stderr to originals
sys.stdout = OLD_STDOUT
sys.stderr = OLD_STDERR
def run(self):
"""
Main control loop for game play.
"""
self.display.initialize(self.state.data)
self.numMoves = 0
# self.display.initialize(self.state.makeObservation(1).data)
# inform learning agents of the game start
for i in range(len(self.agents)):
agent = self.agents[i]
if not agent:
self.mute(i)
# this is a null agent, meaning it failed to load
# the other team wins
print("Agent %d failed to load" % i)
self.unmute()
self._agentCrash(i, quiet=True)
return
if ("registerInitialState" in dir(agent)):
self.mute(i)
if self.catchExceptions:
try:
timed_func = TimeoutFunction(
agent.registerInitialState, int(self.rules.getMaxStartupTime(i)))
try:
start_time = time.time()
timed_func(self.state.deepCopy())
time_taken = time.time() - start_time
self.totalAgentTimes[i] += time_taken
except TimeoutFunctionException:
print("Agent %d ran out of time on startup!" %
i, file=sys.stderr)
self.unmute()
self.agentTimeout = True
self._agentCrash(i, quiet=True)
return
except Exception(data):
self._agentCrash(i, quiet=False)
self.unmute()
return
else:
agent.registerInitialState(self.state.deepCopy())
# TODO: could this exceed the total time
self.unmute()
agentIndex = self.startingIndex
numAgents = len(self.agents)
while not self.gameOver:
# Fetch the next agent
agent = self.agents[agentIndex]
move_time = 0
skip_action = False
# Generate an observation of the state
if 'observationFunction' in dir(agent):
self.mute(agentIndex)
if self.catchExceptions:
try:
timed_func = TimeoutFunction(agent.observationFunction, int(
self.rules.getMoveTimeout(agentIndex)))
try:
start_time = time.time()
observation = timed_func(self.state.deepCopy())
except TimeoutFunctionException:
skip_action = True
move_time += time.time() - start_time
self.unmute()
except Exception(data):
self._agentCrash(agentIndex, quiet=False)
self.unmute()
return
else:
observation = agent.observationFunction(
self.state.deepCopy())
self.unmute()
else:
observation = self.state.deepCopy()
# Solicit an action
action = None
self.mute(agentIndex)
if self.catchExceptions:
try:
timed_func = TimeoutFunction(agent.getAction, int(
self.rules.getMoveTimeout(agentIndex)) - int(move_time))
try:
start_time = time.time()
if skip_action:
raise TimeoutFunctionException()
action = timed_func(observation)
except TimeoutFunctionException:
print("Agent %d timed out on a single move!" %
agentIndex, file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
move_time += time.time() - start_time
if move_time > self.rules.getMoveWarningTime(agentIndex):
self.totalAgentTimeWarnings[agentIndex] += 1
print("Agent %d took too long to make a move! This is warning %d" % (
agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr)
if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex):
print("Agent %d exceeded the maximum number of warnings: %d" % (
agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
self.totalAgentTimes[agentIndex] += move_time
# print "Agent: %d, time: %f, total: %f" % (agentIndex,
# move_time, self.totalAgentTimes[agentIndex])
if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex):
print("Agent %d ran out of time! (time: %1.2f)" % (
agentIndex, self.totalAgentTimes[agentIndex]), file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
self.unmute()
except Exception(data):
self._agentCrash(agentIndex)
self.unmute()
return
else:
action = agent.getAction(observation)
self.unmute()
# Execute the action
self.moveHistory.append((agentIndex, action))
if self.catchExceptions:
try:
self.state = self.state.generateSuccessor(
agentIndex, action)
except Exception(data):
self.mute(agentIndex)
self._agentCrash(agentIndex)
self.unmute()
return
else:
self.state = self.state.generateSuccessor(agentIndex, action)
# Change the display
self.display.update(self.state.data)
###idx = agentIndex - agentIndex % 2 + 1
###self.display.update( self.state.makeObservation(idx).data )
# Allow for game specific conditions (winning, losing, etc.)
self.rules.process(self.state, self)
# Track progress
if agentIndex == numAgents + 1:
self.numMoves += 1
# Next agent
agentIndex = (agentIndex + 1) % numAgents
if _BOINC_ENABLED:
boinc.set_fraction_done(self.getProgress())
# inform a learning agent of the game result
for agentIndex, agent in enumerate(self.agents):
if "final" in dir(agent):
try:
self.mute(agentIndex)
agent.final(self.state)
self.unmute()
except Exception(data):
if not self.catchExceptions:
raise
self._agentCrash(agentIndex)
self.unmute()
return
self.display.finish()