forked from leopoldavezac/BayesianMMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
142 lines (117 loc) · 4.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from bayesian_mmm.normalizer.normalizer import Normalizer
from bayesian_mmm.contribution_analysis.contribution_calculator import ContributionCalculator
from bayesian_mmm.contribution_analysis.contribution_visualizor import ContributionVisualizor
from bayesian_mmm.evaluator.evaluator import Evaluator
from bayesian_mmm.inference_machine.inference_machine import InferenceMachine, save_inference_machine
from bayesian_mmm.sampling.parameter_estimation import estimate_parameters
from bayesian_mmm.sampling.sample_visualizor import SampleVisualizor
from bayesian_mmm.sampling.sampler import Sampler
from bayesian_mmm.utilities.utilities import load_config, load_df, split_train_test
from bayesian_mmm.sampling.stan_model_generator import StanModelGenerator
from bayesian_mmm.spend_transformation.carryover_visualizor import CarryoverVisualizor
from bayesian_mmm.spend_transformation.diminushing_returns_visualizor import DiminushingReturnsVisualizor
def run(config_file_nm: str = "train") -> None:
config = load_config(config_file_nm)
experiment_nm = config["EXPERIMENT_NM"]
media_nms = config["MEDIA_NMS"]
ctrl_nms = config["CTRL_NMS"]
target_nm = config["TARGET_NM"]
date_nm = config["DATE_NM"]
df = load_df(config["DATA_SOURCE_PATH"], date_nm)
train, test = split_train_test(df, config["NB_TEST_OBS"])
predictor_normalizer_args = config["NORMALIZATION"]["PREDICTORS"]
predictor_normalizer = Normalizer(**predictor_normalizer_args)
predictor_normalizer.fit(train[media_nms+ctrl_nms].values)
predictor_normalizer.save("predictor_"+experiment_nm)
train[media_nms+ctrl_nms] = predictor_normalizer.transform(
train[media_nms+ctrl_nms].values
)
test[media_nms+ctrl_nms] = predictor_normalizer.transform(
test[media_nms+ctrl_nms].values
)
target_normalizer_args = config["NORMALIZATION"]["TARGET"]
target_normalizer = Normalizer(**target_normalizer_args)
target_normalizer.fit(
train[target_nm].values.reshape((-1,1))
)
target_normalizer.save("target_"+experiment_nm)
train[target_nm] = target_normalizer.transform(
train[target_nm].values.reshape((-1,1))
)
test[target_nm] = target_normalizer.transform(
test[target_nm].values.reshape((-1,1))
)
stan_model_generator = StanModelGenerator(
config["CARRYOVER_TRANSFO_NM"],
config["DIMINUSHING_RETURNS_TRANSFO_NM"],
len(ctrl_nms) > 0
)
stan_model_generator.create_model()
stan_model = stan_model_generator.get_model()
del stan_model_generator
sampler = Sampler(stan_model, config["MAX_LAG"])
sampler.create_stan_input(
train[media_nms].values,
train[ctrl_nms].values if len(ctrl_nms) > 0 else None,
train[target_nm].values
)
sampling_results = sampler.run_sampling(
config["SAMPLING_N_ITER"],
config["SAMPLING_N_PROCESSORS"]
)
del sampler
sample_visualizor = SampleVisualizor(
media_nms,
ctrl_nms if len(ctrl_nms) > 0 else None,
)
sample_visualizor.write_fig(sampling_results, experiment_nm)
del sample_visualizor
parameter_estimation = estimate_parameters(
sampling_results, config["PARAMETER_ESTIMATOR_NM"]
)
carryover_visualizor = CarryoverVisualizor(
parameter_estimation,
media_nms,
config["MAX_LAG"]
)
carryover_visualizor.write_fig(train[media_nms].values, experiment_nm)
del carryover_visualizor
diminushing_returns_visualizor = DiminushingReturnsVisualizor(
parameter_estimation,
media_nms
)
diminushing_returns_visualizor.write_fig(train[media_nms].values, experiment_nm)
inference_machine = InferenceMachine(parameter_estimation, config["MAX_LAG"])
save_inference_machine(inference_machine, experiment_nm)
evaluator = Evaluator(
inference_machine,
train[media_nms].values,
train[ctrl_nms].values if len(ctrl_nms)>0 else None,
train[target_nm].values,
test[media_nms].values,
test[ctrl_nms].values if len(ctrl_nms)>0 else None,
test[target_nm].values,
target_normalizer,
df.index.values
)
evaluator.write_performance(experiment_nm)
evaluator.write_fig_true_vs_pred(experiment_nm)
evaluator.save_pred(experiment_nm)
contribution_calculator = ContributionCalculator(
parameter_estimation,
config["MAX_LAG"],
target_normalizer,
media_nms,
ctrl_nms
)
contribution_calculator.compute_results(
train[media_nms].values,
train[ctrl_nms].values if len(ctrl_nms) > 0 else None,
train.index.values
)
contribution_calculator.write_results(experiment_nm)
contribution = contribution_calculator.get_results()
contribution_visualizor = ContributionVisualizor(contribution, train[media_nms])
contribution_visualizor.write_fig(config["EXPERIMENT_NM"])
if __name__ == "__main__":
run()