-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
350 lines (325 loc) · 16.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from tqdm import tqdm
import numpy as np
import tensorflow as tf
from tensorflow import keras
from pykalman import KalmanFilter
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import MinMaxScaler
import talib
def tstm_model(timestep=5):
input_X = keras.layers.Input((timestep,20,16))
input_Y = keras.layers.Input((timestep,10))
#각 DH 마다의 가중치에 따라 feature 생성
channel_process = []
for i in range(timestep):
_channel = input_X[:,i,:,:]
_channel = keras.layers.LSTM(10, input_shape=(20,16))(_channel)
channel_process.append(_channel)
X = keras.layers.Concatenate()(channel_process)
X = keras.layers.Reshape((timestep,10))(X)
out, h, c = keras.layers.LSTM(10, return_state=True)(X)
encode_state = [h,c]
# 비교 (timestep, 10)
X = keras.layers.LSTM(10, return_squences=True, intial_state=encode_state)(input_Y)
return keras.Model(inputs=[input_X,input_Y], outputs=X)
def dstm_model(timestep=5):
input_X = keras.layers.Input((timestep,20,16))
input_X1 = input_X[:,:,:,0:14]
input_X2 = input_X[:,-1,-1,14]
input_X3 = input_X[:,-1,-1,15]
# None, timestep, 20, 14
channel_process = []
for i in range(timestep):
channel_ = input_X1[:,i,:,:]
channel_=keras.layers.LSTM(10,return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(20,16))(channel_)
channel_ = keras.layers.Dropout(0.2)(channel_)
channel_=keras.layers.LSTM(10,return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(20,10))(channel_)
channel_ = keras.layers.BatchNormalization()(channel_)
channel_=keras.layers.LSTM(10,return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(20,10))(channel_)
channel_ = keras.layers.Dropout(0.2)(channel_)
channel_=keras.layers.LSTM(10, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(20,10))(channel_)
channel_ = keras.layers.BatchNormalization()(channel_)
#output = None,1,10
channel_process.append(channel_)
X1 = keras.layers.Reshape((1,))(input_X2)
X2 =keras.layers.Reshape((1,))(input_X3)
#(timestep,)
X = keras.layers.Concatenate()(channel_process)
X = keras.layers.Reshape((timestep,10))(X)
# None, timestep, 10
X = keras.layers.LSTM(50, return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(timestep,10))(X)
X = keras.layers.Dropout(0.2)(X)
X = keras.layers.LSTM(50, return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(timestep,50))(X)
X = keras.layers.BatchNormalization()(X)
X = keras.layers.LSTM(50, return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(timestep,50))(X)
X = keras.layers.Dropout(0.2)(X)
X = keras.layers.LSTM(50,recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(timestep,50))(X)
X = keras.layers.BatchNormalization()(X)
X = keras.layers.Dense(30, activation="relu")(X)
X = keras.layers.BatchNormalization()(X)
X = keras.layers.Dense(15, activation="relu")(X)
X = keras.layers.Dropout(0.2)(X)
X = keras.layers.Dense(10, activation="relu")(X)
X = keras.layers.BatchNormalization()(X)
X = keras.layers.Concatenate(axis=-1)([X,X2])
X = keras.layers.Dense(10, activation="softmax")(X)
lmodel = keras.Model(inputs=input_X, outputs=X)
return lmodel
def fstm_model(timestep=5):
#(None,Timestep,26)
input_X = keras.layers.Input((timestep,24))
input_X1 = input_X[:,:,0:22]
input_X2 = input_X[:,-1,22]
input_X3 = input_X[:,-1,23]
X2 = keras.layers.Reshape((1,))(input_X2)
X3 = keras.layers.Reshape((1,))(input_X3)
# None, timestep, 20, 14
X = keras.layers.LSTM(70,return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(timestep,14))(input_X1)
X = keras.layers.Dropout(0.2)(X)
X = keras.layers.LSTM(70,return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(timestep,70))(X)
X = keras.layers.BatchNormalization()(X)
X = keras.layers.LSTM(70,return_sequences=True, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(timestep,70))(X)
X = keras.layers.Dropout(0.2)(X)
X = keras.layers.LSTM(70, recurrent_regularizer=keras.regularizers.l2(0.01),input_shape=(timestep,70))(X)
X = keras.layers.BatchNormalization()(X)
X = keras.layers.Concatenate()([X,X2])
X = keras.layers.Dense(50, activation="relu")(X)
X = keras.layers.Dropout(0.2)(X)
X = keras.layers.Dense(25, activation="relu")(X)
X = keras.layers.BatchNormalization()(X)
X = keras.layers.Concatenate()([X,X3])
X = keras.layers.Dense(10, activation="softmax")(X)
lmodel = keras.Model(inputs=input_X, outputs=X)
return lmodel
def create_ldstm_data_set(df,timestep=5):
X = []
Y = []
df['list'] = df.drop(columns=['VV','STN','V0','rainfall_train.ef_year','day','rainfall_train.ef_hour','class']).apply(lambda x: np.array(x),axis=1)
sample_weights = 1-df['class'].value_counts(normalize=True).values
for i in tqdm(range(1,21)):
stn_df = df[df["STN"] == f"STN0{'%02d' % i}"].copy()
tmp2 = stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['list'].apply(list).values
max_len = 20
tmp3 = []
for i in tmp2:
n = len(i)
if max_len == n:
tmp3.append(np.array(i))
else:
#평균값
tmp3.append(np.vstack([np.array(i),np.array([(np.mean(np.array(i),axis=0))] * (max_len-n))]))
# DH 빠른 값
# tmp3.append(np.vstack([np.array(i),np.array([np.array(i[0])] * (max_len-n))]))
# print(i[0])
# break
y_tmp = stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['class'].mean().values.astype(int)
Y.extend(y_tmp)
m = len(tmp3) - timestep
tmp4 = []
for i in range(timestep):
s = np.array(tmp3[0:i+1])
tmp4.append(np.vstack([s,np.repeat(tmp3[i].reshape(1,20,16), timestep - (i+1), axis=0)]))
for i in range(m):
tmp4.append(np.array(tmp3[i:i+timestep]))
X.extend(tmp4)
Y = np.array(Y)
sample_weights = sample_weights[Y]*10
return np.array(X),Y,sample_weights
def create_tstm_data_set(df,scalersp=None,timestep=5):
X = []
Y = []
scalers = []
len_stn =[]
y_class =[]
df['list'] = df.drop(columns=['VV','STN','V0','rainfall_train.ef_year','day','rainfall_train.ef_hour','class','RP']).apply(lambda x: np.array(x),axis=1)
sample_weights = 1-df['class'].value_counts(normalize=True).values
for i in tqdm(range(1,21)):
# scaler = MinMaxScaler()
stn_df = df[df["STN"] == f"STN0{'%02d' % i}"].copy()
tmp2 = stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['list'].apply(list).values
max_len = 20
tmp3 = []
for j in tmp2:
n = len(j)
if max_len == n:
tmp3.append(np.array(j))
else:
#평균값
tmp3.append(np.vstack([np.array(j),np.array([(np.mean(np.array(j),axis=0))] * (max_len-n))]))
# DH 빠른 값
# tmp3.append(np.vstack([np.array(i),np.array([np.array(i[0])] * (max_len-n))]))
# print(i[0])
# break
y_tmp = stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['VV'].mean().values
# scaler.fit([y_tmp])
# if scalersp:
# y_tmp = scalersp[i].transform([y_tmp]).reshape(-1)
# else:
# y_tmp = scaler.transform([y_tmp]).reshape(-1)
y_class.extend(stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['class'].mean().values.astype(int))
# scalers.append(scaler)
m = len(tmp3) - timestep
tmp4 = []
tmp_Y = []
for i in range(timestep):
s = np.array(tmp3[0:i+1])
t = np.array(y_tmp[0:i+1]).reshape((i+1),1)
tmp4.append(np.vstack([s,np.repeat(tmp3[i].reshape(1,20,15), timestep - (i+1), axis=0)]))
tmp_Y.append(np.vstack([t,np.repeat(y_tmp[i].reshape(1,1), timestep -(i+1), axis=0)]))
for i in range(m):
tmp4.append(np.array(tmp3[i:i+timestep]))
tmp_Y.append(np.array(y_tmp[i:i+timestep]).reshape(timestep,1))
X.extend(tmp4)
Y.extend(tmp_Y)
len_stn.append(len(y_tmp))
# Y.shape(None, timestep,1)
Y = np.array(Y)
sample_= np.array(y_class)
sample_weights = sample_weights[sample_]*10
return np.array(X),Y,sample_weights,len_stn
def create_fstm_data_set(df,timestep=5):
X = []
Y = []
df['list'] = df.sort_values(by=['DH']).drop(columns=['VV','STN','V0','rainfall_train.ef_year','day','rainfall_train.ef_hour','class']).apply(lambda x: np.array(x),axis=1)
sample_weights = 1-df['class'].value_counts(normalize=True).values
for i in tqdm(range(1,21)):
stn_df = df[df["STN"] == f"STN0{'%02d' % i}"].copy()
tmp2 = np.array(list(stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['list'].apply(lambda x: x.iloc[0]).values))
y_tmp = stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['class'].mean().values.astype(int)
Y.extend(y_tmp)
tmp3 = tmp2
# tmp3 = np.hstack([tmp2,talib.SMA(tmp2[:,14],timeperiod=5).reshape(-1,1)])
# tmp3 = np.hstack([tmp3,talib.SMA(tmp2[:,14],timeperiod=10).reshape(-1,1)])
# tmp3 = np.hstack([tmp3,talib.SMA(tmp2[:,15],timeperiod=5).reshape(-1,1)])
# tmp3 = np.hstack([tmp3,talib.SMA(tmp2[:,15],timeperiod=10).reshape(-1,1)])
# tmp3 = np.hstack([tmp3,talib.SMA(talib.STDDEV(tmp2[:,14]), timeperiod=5).reshape(-1,1)])
# tmp3 = np.hstack([tmp3,talib.SMA(talib.STDDEV(tmp2[:,14]), timeperiod=10).reshape(-1,1)])
# tmp3 = np.hstack([tmp3,talib.SMA(talib.STDDEV(tmp2[:,15]), timeperiod=5).reshape(-1,1)])
# tmp3 = np.hstack([tmp3,talib.SMA(talib.STDDEV(tmp2[:,15]), timeperiod=10).reshape(-1,1)])
#macd,_,_ =talib.MACD(tmp2[:,14], fastperiod=12, slowperiod=26, signalperiod=9)
#tmp3 = np.hstack([tmp3,macd.reshape(-1,1)])
#macd,_,_ =talib.MACD(tmp2[:,15], fastperiod=12, slowperiod=26, signalperiod=9)
#tmp3 = np.hstack([tmp3,macd.reshape(-1,1)])
m = len(tmp3) - timestep
tmp4 = []
for i in range(timestep):
s = np.array(tmp3[0:i+1])
tmp4.append(np.vstack([s,np.repeat(tmp3[i].reshape(1,16), timestep - (i+1), axis=0)]))
for i in range(m):
tmp4.append(np.array(tmp3[i:i+timestep]))
X.extend(tmp4)
Y = np.array(Y)
sample_weights = sample_weights[Y]*10
return np.array(X),Y,sample_weights
def create_dstm_data_set(df,timestep=5):
X = []
Y = []
df['list'] = df.drop(columns=['VV','STN','V0','rainfall_train.ef_year','day','rainfall_train.ef_hour','class']).apply(lambda x: np.array(x),axis=1)
sample_weights = 1-df['class'].value_counts(normalize=True).values
for i in tqdm(range(1,21)):
stn_df = df[df["STN"] == f"STN0{'%02d' % i}"].copy()
tmp2 = stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['list'].apply(list).values
max_len = 20
tmp3 = []
for i in tmp2:
n = len(i)
if max_len == n:
tmp3.append(np.array(i))
else:
#평균값
tmp3.append(np.vstack([np.array(i),np.array([(np.mean(np.array(i),axis=0))] * (max_len-n))]))
# DH 빠른 값
# tmp3.append(np.vstack([np.array(i),np.array([np.array(i[0])] * (max_len-n))]))
# print(i[0])
# break
y_tmp = stn_df.groupby(by=['rainfall_train.ef_year','day','rainfall_train.ef_hour'])['class'].mean().values.astype(int)
Y.extend(y_tmp)
m = len(tmp3) - timestep
tmp4 = []
for i in range(timestep):
s = np.array(tmp3[0:i+1])
tmp4.append(np.vstack([s,np.repeat(tmp3[i].reshape(1,20,16), timestep - (i+1), axis=0)]))
for i in range(m):
tmp4.append(np.array(tmp3[i:i+timestep]))
X.extend(tmp4)
Y = np.array(Y)
sample_weights = sample_weights[Y]*10
return np.array(X),Y,sample_weights
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from sklearn.preprocessing import MinMaxScaler, LabelEncoder, OneHotEncoder
def create_all_data_set():
rain_train = pd.read_csv("./rainfall_train.csv")
rain_train.columns = [
'Unnamed: 0',
'fc_year', 'fc_month', 'fc_day', 'fc_hour',
'stn4contest', 'dh',
'ef_year', 'ef_month', 'ef_day', 'ef_hour',
'v01', 'v02', 'v03', 'v04', 'v05', 'v06', 'v07', 'v08', 'v09',
'vv', 'class_interval'
]
# 불필요한 변수 제거
rain_train.drop(columns=['Unnamed: 0'], inplace=True)
df = rain_train.copy()
# -999 값을 NaN으로 변환
df = df[df['class_interval'] != -999]
# 월별 누적 일수 계산
month_to_day = [31,28,31,30,31,30,31,31,30,31,30,31]
for i in range(1, 12):
month_to_day[i] += month_to_day[i-1]
month_to_day = {idx+2: i for idx, i in enumerate(month_to_day)}
month_to_day[1] = 0
# 주기적 특성 추가
df['day'] = df['ef_month'].apply(lambda x: month_to_day[x]) + df['ef_day']
df['day_sin'] = np.sin(2*np.pi*df['day']/365)
df['day_cos'] = np.cos(2*np.pi*df['day']/365)
# df = df.drop(columns=['ef_month', 'ef_day'])
df['hour_sin'] = np.sin(2 * np.pi * df['ef_hour'] / 24)
df['hour_cos'] = np.cos(2 * np.pi * df['ef_hour'] / 24)
# df = df.drop(columns=['ef_hour'])
# 칼만 필터 적용 (예: v01 변수에 적용)
kf = KalmanFilter(initial_state_mean=0, n_dim_obs=1)
state_means, _ = kf.filter(df['v01'].values)
df['v01'] = state_means.flatten()
# 이진 분류를 위한 타겟 생성
df['binary_target'] = df['class_interval'].apply(lambda x: 0 if x == 0 else 1)
# OneHotEncoder를 사용하여 fc_year 원핫 인코딩
ohe = OneHotEncoder(handle_unknown='ignore')
fc_year_encoded = ohe.fit_transform(df[['fc_year']]).toarray()
fc_year_encoded_df = pd.DataFrame(fc_year_encoded, columns=ohe.get_feature_names_out(['fc_year']))
df = pd.concat([df, fc_year_encoded_df], axis=1)
df = df.drop(columns=['fc_year'])
# 필요한 특성 선택
features = ['dh', 'v01', 'v02', 'v03', 'v04', 'v05', 'v06', 'v07', 'v08', 'v09', 'day_sin', 'day_cos', 'hour_sin', 'hour_cos'] + list(fc_year_encoded_df.columns)
target = 'class_interval'
# df = df[features]
#중복없이 가장 예보와 예상시간이 가까운 경우 출력
#데이터 수를 줄이는 알고리즘 따로 정리할 필요가 있음
# close_tr = df[df['dh']<=12]
#ef_hour
df['forecast'] = df['ef_hour'] + df['dh']
df['forecast'] = np.where(df['forecast'] == 24, 0, df['forecast'])
df['forecast'] = np.where(df['forecast'] > 24, df['forecast'] - 24, df['forecast'])
# df = df.copy().drop(['ef_hour'], axis=True)
#언더샘플링을 위한 v00 컬럼생성
df['v00'] = (df[['v01', 'v02', 'v03', 'v04', 'v05', 'v06', 'v07', 'v08', 'v09']].sum(axis=1) == 0).astype(int) * 100
#kalmanfilter
for var in ['v01', 'v02', 'v03', 'v04', 'v05', 'v06', 'v07', 'v08', 'v09']:
kf = KalmanFilter(initial_state_mean=0, n_dim_obs=1)
state_means, _ = kf.filter(df[var].values)
df[f'{var}_kalman'] = state_means.flatten()
return df
def data_sampling(df):
#데이터 샘플링 관련
# 데이터 언더샘플링
df_class_0 = df[df['class_interval'] == 0]
df_class_non_0 = df[df['class_interval'] != 0]
# class_interval 값이 0인 데이터의 언더샘플링
df_class_0_under = df_class_0.sample(len(df_class_non_0), random_state=42)
# 언더샘플링된 데이터와 나머지 데이터를 결합
df_balanced = pd.concat([df_class_0_under, df_class_non_0])
from util import preprocessing_daegun
if __name__ == "__main__":
df = preprocessing_daegun
X,Y, sample_weigts= create_fstm_data_set(df)