-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
76 lines (68 loc) · 2.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import run_lib
from absl import app
from absl import flags
from ml_collections.config_flags import config_flags
import logging
import os
import tensorflow as tf
from datetime import datetime
from utils.utils import setup_seed
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=True
)
flags.DEFINE_string("workdir", None, "Work directory.")
flags.DEFINE_enum("mode", None, ["train", "sample"], "Running mode: train or sample")
flags.mark_flags_as_required(["config", "workdir", "mode"])
def main(argv):
# set_up seed
setup_seed(FLAGS.config.seed)
print(FLAGS.config.seed)
assert FLAGS.workdir == "results"
print(FLAGS.config)
if FLAGS.mode == "train":
TIMESTAMP = "{0:%Y_%m_%dT%H_%M_%S}".format(datetime.now())
if FLAGS.config.training.sde == "hfssde":
MODEL_ID = "_".join(
[
TIMESTAMP,
FLAGS.config.model.name,
FLAGS.config.training.sde,
FLAGS.config.training.mask_type,
str(FLAGS.config.training.acs),
FLAGS.config.data.normalize_type,
str(FLAGS.config.model.beta_max),
"N",
str(FLAGS.config.model.num_scales),
]
)
else:
MODEL_ID = "_".join(
[
TIMESTAMP,
FLAGS.config.model.name,
FLAGS.config.training.sde,
"N",
str(FLAGS.config.model.num_scales),
]
)
FLAGS.workdir = os.path.join(FLAGS.workdir, MODEL_ID)
tf.io.gfile.makedirs(FLAGS.workdir)
gfile_stream = open(os.path.join(FLAGS.workdir, "stdout.txt"), "w")
handler = logging.StreamHandler(gfile_stream)
formatter = logging.Formatter(
"%(levelname)s - %(filename)s - %(asctime)s - %(message)s"
)
handler.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler)
logger.setLevel("INFO")
# Run the training pipeline
run_lib.train(FLAGS.config, FLAGS.workdir)
elif FLAGS.mode == "sample":
FLAGS.workdir = os.path.join(FLAGS.workdir, FLAGS.config.sampling.folder)
run_lib.sample(FLAGS.config, FLAGS.workdir)
else:
raise ValueError(f"Mode {FLAGS.mode} not recognized.")
if __name__ == "__main__":
app.run(main)