🌟 Instructions for generating dataset we proposed.
language_vision_interface
├──scripts
├──data
│ ├── image_pairs_train
│ │ ├── Abyssianian_1_cls
│ │ │ ├── Abyssianian_1_0
│ │ │ ├── Abyssianian_1_1
│ │ ├── Abyssianian_2_cls
│ │ │ ├── Abyssianian_2_0
│ │ │ ├── Abyssianian_2_1
│ │ ├── ...
│ │ ├── American_bulldog_100_cls
│ │ │ ├── American_bulldog_100_0
│ │ │ ├── American_bulldog_100_1
│ │ ├── ...
│ │ ├── Abyssianian_1_seg
│ │ │ ├── Abyssianian_1_0
│ │ │ ├── Abyssianian_1_1
│ │ ├── Abyssianian_2_seg
│ │ │ ├── Abyssianian_1_0
│ │ │ ├── Abyssianian_2_1
│ │ ├── ...
│ │ ├── American_bulldog_100_seg
│ │ │ ├── American_bulldog_100_0
│ │ │ ├── American_bulldog_100_1
│ │ ├── ...
│ │ ├── Abyssianian_1_det
│ │ │ ├── Abyssianian_1_0
│ │ │ ├── Abyssianian_1_1
│ │ ├── Abyssianian_2_det
│ │ │ ├── Abyssianian_2_0
│ │ │ ├── Abyssianian_2_1
│ │ ├── ...
│ │ ├── American_bulldog_100_det
│ │ │ ├── American_bulldog_100_0
│ │ │ ├── American_bulldog_100_1
│ │ ├── ...
│ │ ├── bathroom_0001_01_depes
│ │ │ ├── bathroom_0001_0
│ │ │ ├── bathroom_0001_1
│ │ ├── bathroom_0001_02_depes
│ │ │ ├── bathroom_0001_0
│ │ │ ├── bathroom_0001_1
│ │ ├── ...
│ │ ├── living_room_0010_33_depes
│ │ │ ├── living_room_0010_33_0
│ │ │ ├── living_room_0010_33_1
We pool all four datasets together and train them at one time.
NYUV2 - Depth estimation
Download the dataset here
Or, you can download the processed dataset follow the instructions here.
MS-COCO - Object Detection
Download the dataset here
ADE20k - Semantic Segmentation
Download the dataset here Download the instance annotation from here
cd ADEChallengeData2016
wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
Oxford-IIIT - Classification
Download the dataset here
External dataset for testing:
SUNRGBD - Depth estimation
Download the dataset here and download the split file from this here. We remove NYUv2 part.
PASCAL VOC2012 - Segmentation & Detection
Download the dataset here
We need to transfer the voc format to the coco one by running:
python data/VOCdevkit/VOC2012/voc2coco.py
Next, we are going to process these datasets to build our training data. You can run the following commands.
python dataset_creation/format_dataset.py --save_root <path_to_save> --tasks <vision tasks> --data_root <path_to_dataset>
# specific examples
## coco
python build_data/format_dataset_rp.py --save_root './image_pairs' --tasks ['det'] --data_root './data/coco'