-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDecimalFacts.v
703 lines (612 loc) · 22.9 KB
/
DecimalFacts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * DecimalFacts : some facts about Decimal numbers *)
Require Import Decimal Arith ZArith.
Variant digits := d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | d9.
Fixpoint to_list (u : uint) : list digits :=
match u with
| Nil => nil
| D0 u => cons d0 (to_list u)
| D1 u => cons d1 (to_list u)
| D2 u => cons d2 (to_list u)
| D3 u => cons d3 (to_list u)
| D4 u => cons d4 (to_list u)
| D5 u => cons d5 (to_list u)
| D6 u => cons d6 (to_list u)
| D7 u => cons d7 (to_list u)
| D8 u => cons d8 (to_list u)
| D9 u => cons d9 (to_list u)
end.
Fixpoint of_list (l : list digits) : uint :=
match l with
| nil => Nil
| cons d0 l => D0 (of_list l)
| cons d1 l => D1 (of_list l)
| cons d2 l => D2 (of_list l)
| cons d3 l => D3 (of_list l)
| cons d4 l => D4 (of_list l)
| cons d5 l => D5 (of_list l)
| cons d6 l => D6 (of_list l)
| cons d7 l => D7 (of_list l)
| cons d8 l => D8 (of_list l)
| cons d9 l => D9 (of_list l)
end.
Lemma of_list_to_list u : of_list (to_list u) = u.
Proof. now induction u; [|simpl; rewrite IHu..]. Qed.
Lemma to_list_of_list l : to_list (of_list l) = l.
Proof. now induction l as [|h t IHl]; [|case h; simpl; rewrite IHl]. Qed.
Lemma to_list_inj u u' : to_list u = to_list u' -> u = u'.
Proof.
now intro H; rewrite <-(of_list_to_list u), <-(of_list_to_list u'), H.
Qed.
Lemma of_list_inj u u' : of_list u = of_list u' -> u = u'.
Proof.
now intro H; rewrite <-(to_list_of_list u), <-(to_list_of_list u'), H.
Qed.
Lemma nb_digits_spec u : nb_digits u = length (to_list u).
Proof. now induction u; [|simpl; rewrite IHu..]. Qed.
Fixpoint lnzhead l :=
match l with
| nil => nil
| cons d l' =>
match d with
| d0 => lnzhead l'
| _ => l
end
end.
Lemma nzhead_spec u : to_list (nzhead u) = lnzhead (to_list u).
Proof. now induction u; [|simpl; rewrite IHu|..]. Qed.
Definition lzero := cons d0 nil.
Definition lunorm l :=
match lnzhead l with
| nil => lzero
| d => d
end.
Lemma unorm_spec u : to_list (unorm u) = lunorm (to_list u).
Proof. now unfold unorm, lunorm; rewrite <-nzhead_spec; case (nzhead u). Qed.
Lemma revapp_spec d d' :
to_list (revapp d d') = List.rev_append (to_list d) (to_list d').
Proof. now revert d'; induction d; intro d'; [|simpl; rewrite IHd..]. Qed.
Lemma rev_spec d : to_list (rev d) = List.rev (to_list d).
Proof. now unfold rev; rewrite revapp_spec, List.rev_alt; simpl. Qed.
Lemma app_spec d d' :
to_list (app d d') = Datatypes.app (to_list d) (to_list d').
Proof.
unfold app.
now rewrite revapp_spec, List.rev_append_rev, rev_spec, List.rev_involutive.
Qed.
Definition lnztail l :=
let fix aux l_rev :=
match l_rev with
| cons d0 l_rev => let (r, n) := aux l_rev in pair r (S n)
| _ => pair l_rev O
end in
let (r, n) := aux (List.rev l) in pair (List.rev r) n.
Lemma nztail_spec d :
let (r, n) := nztail d in
let (r', n') := lnztail (to_list d) in
to_list r = r' /\ n = n'.
Proof.
unfold nztail, lnztail.
set (f := fix aux d_rev := match d_rev with
| D0 d_rev => let (r, n) := aux d_rev in (r, S n)
| _ => (d_rev, 0) end).
set (f' := fix aux (l_rev : list digits) : list digits * nat :=
match l_rev with
| cons d0 l_rev => let (r, n) := aux l_rev in (r, S n)
| _ => (l_rev, 0)
end).
rewrite <-(of_list_to_list (rev d)), rev_spec.
induction (List.rev _) as [|h t IHl]; [now simpl|].
case h; simpl; [|now rewrite rev_spec; simpl; rewrite to_list_of_list..].
now revert IHl; case f; intros r n; case f'; intros r' n' [-> ->].
Qed.
Lemma del_head_spec_0 d : del_head 0 d = d.
Proof. now simpl. Qed.
Lemma del_head_spec_small n d :
n <= length (to_list d) -> to_list (del_head n d) = List.skipn n (to_list d).
Proof.
revert d; induction n as [|n IHn]; intro d; [now simpl|].
now case d; [|intros d' H; apply IHn, le_S_n..].
Qed.
Lemma del_head_spec_large n d : length (to_list d) < n -> del_head n d = zero.
Proof.
revert d; induction n; intro d; [now case d|].
now case d; [|intro d'; simpl; intro H; rewrite (IHn _ (proj2 (Nat.succ_lt_mono _ _) H))..].
Qed.
Lemma nb_digits_0 d : nb_digits d = 0 -> d = Nil.
Proof.
rewrite nb_digits_spec, <-(of_list_to_list d).
now case (to_list d) as [|h t]; [|rewrite to_list_of_list].
Qed.
Lemma nb_digits_n0 d : nb_digits d <> 0 -> d <> Nil.
Proof. now case d; [|intros u _..]. Qed.
Lemma nb_digits_iter_D0 n d :
nb_digits (Nat.iter n D0 d) = n + nb_digits d.
Proof. now induction n; simpl; [|rewrite IHn]. Qed.
Lemma length_lnzhead l : length (lnzhead l) <= length l.
Proof. now induction l as [|h t IHl]; [|case h; [apply le_S|..]]. Qed.
Lemma nb_digits_nzhead u : nb_digits (nzhead u) <= nb_digits u.
Proof. now induction u; [|apply le_S|..]. Qed.
Lemma unorm_nzhead u : nzhead u <> Nil -> unorm u = nzhead u.
Proof. now unfold unorm; case nzhead. Qed.
Lemma nb_digits_unorm u : u <> Nil -> nb_digits (unorm u) <= nb_digits u.
Proof.
intro Hu; case (uint_eq_dec (nzhead u) Nil).
{ unfold unorm; intros ->; simpl.
now revert Hu; case u; [|intros u' _; apply le_n_S, Nat.le_0_l..]. }
intro H; rewrite (unorm_nzhead _ H); apply nb_digits_nzhead.
Qed.
Lemma nb_digits_rev d : nb_digits (rev d) = nb_digits d.
Proof. now rewrite !nb_digits_spec, rev_spec, List.length_rev. Qed.
Lemma nb_digits_del_head_sub d n :
n <= nb_digits d ->
nb_digits (del_head (nb_digits d - n) d) = n.
Proof.
rewrite !nb_digits_spec; intro Hn.
rewrite del_head_spec_small; [|now apply Nat.le_sub_l].
rewrite List.length_skipn, <-(Nat2Z.id (_ - _)).
rewrite Nat2Z.inj_sub; [|now apply Nat.le_sub_l].
rewrite (Nat2Z.inj_sub _ _ Hn).
rewrite Z.sub_sub_distr, Z.sub_diag; apply Nat2Z.id.
Qed.
Lemma unorm_D0 u : unorm (D0 u) = unorm u.
Proof. reflexivity. Qed.
Lemma app_nil_l d : app Nil d = d.
Proof. now simpl. Qed.
Lemma app_nil_r d : app d Nil = d.
Proof. now apply to_list_inj; rewrite app_spec, List.app_nil_r. Qed.
Lemma abs_app_int d d' : abs (app_int d d') = app (abs d) d'.
Proof. now case d. Qed.
Lemma abs_norm d : abs (norm d) = unorm (abs d).
Proof. now case d as [u|u]; [|simpl; unfold unorm; case nzhead]. Qed.
Lemma iter_D0_nzhead d :
Nat.iter (nb_digits d - nb_digits (nzhead d)) D0 (nzhead d) = d.
Proof.
induction d; [now simpl| |now rewrite Nat.sub_diag..].
simpl nzhead; simpl nb_digits.
rewrite (Nat.sub_succ_l _ _ (nb_digits_nzhead _)).
now rewrite <-IHd at 4.
Qed.
Lemma iter_D0_unorm d :
d <> Nil ->
Nat.iter (nb_digits d - nb_digits (unorm d)) D0 (unorm d) = d.
Proof.
case (uint_eq_dec (nzhead d) Nil); intro Hn.
{ unfold unorm; rewrite Hn; simpl; intro H.
revert H Hn; induction d; [now simpl|intros _|now intros _..].
case (uint_eq_dec d Nil); simpl; intros H Hn; [now rewrite H|].
rewrite Nat.sub_0_r, <- (Nat.sub_add 1 (nb_digits d)), Nat.add_comm.
{ now simpl; rewrite IHd. }
revert H; case d; [now simpl|intros u _; apply le_n_S, Nat.le_0_l..]. }
intros _; rewrite (unorm_nzhead _ Hn); apply iter_D0_nzhead.
Qed.
Lemma nzhead_app_l d d' :
nb_digits d' < nb_digits (nzhead (app d d')) ->
nzhead (app d d') = app (nzhead d) d'.
Proof.
intro Hl; apply to_list_inj; revert Hl.
rewrite !nb_digits_spec, app_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl].
{ now simpl; intro H; exfalso; revert H; apply Nat.le_ngt, length_lnzhead. }
rewrite <-List.app_comm_cons.
now case h; [simpl; intro Hl; apply IHl|..].
Qed.
Lemma nzhead_app_r d d' :
nb_digits (nzhead (app d d')) <= nb_digits d' ->
nzhead (app d d') = nzhead d'.
Proof.
intro Hl; apply to_list_inj; revert Hl.
rewrite !nb_digits_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
rewrite <-List.app_comm_cons.
now case h; [| simpl; rewrite List.length_app; intro Hl; exfalso; revert Hl;
apply Nat.le_ngt, Nat.le_add_l..].
Qed.
Lemma nzhead_app_nil_r d d' : nzhead (app d d') = Nil -> nzhead d' = Nil.
Proof.
now intro H; generalize H; rewrite nzhead_app_r; [|rewrite H; apply Nat.le_0_l].
Qed.
Lemma nzhead_app_nil d d' :
nb_digits (nzhead (app d d')) <= nb_digits d' -> nzhead d = Nil.
Proof.
intro H; apply to_list_inj; revert H.
rewrite !nb_digits_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
now case h; [now simpl|..];
simpl;intro H; exfalso; revert H; apply Nat.le_ngt;
rewrite List.length_app; apply Nat.le_add_l.
Qed.
Lemma nzhead_app_nil_l d d' : nzhead (app d d') = Nil -> nzhead d = Nil.
Proof.
intro H; apply to_list_inj; generalize (f_equal to_list H); clear H.
rewrite !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
now rewrite <-List.app_comm_cons; case h.
Qed.
Lemma unorm_app_zero d d' :
nb_digits (unorm (app d d')) <= nb_digits d' -> unorm d = zero.
Proof.
unfold unorm.
case (uint_eq_dec (nzhead (app d d')) Nil).
{ now intro Hn; rewrite Hn, (nzhead_app_nil_l _ _ Hn). }
intro H; fold (unorm (app d d')); rewrite (unorm_nzhead _ H); intro H'.
case (uint_eq_dec (nzhead d) Nil); [now intros->|].
intro H''; fold (unorm d); rewrite (unorm_nzhead _ H'').
exfalso; apply H''; revert H'; apply nzhead_app_nil.
Qed.
Lemma app_int_nil_r d : app_int d Nil = d.
Proof.
now case d; intro d'; simpl;
rewrite <-(of_list_to_list (app _ _)), app_spec;
rewrite List.app_nil_r, of_list_to_list.
Qed.
Lemma unorm_app_l d d' :
nb_digits d' < nb_digits (unorm (app d d')) ->
unorm (app d d') = app (unorm d) d'.
Proof.
case (uint_eq_dec d' Nil); [now intros->; rewrite !app_nil_r|intro Hd'].
case (uint_eq_dec (nzhead (app d d')) Nil).
{ unfold unorm; intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt.
now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Peano.le_0_n..]. }
intro Ha; rewrite (unorm_nzhead _ Ha).
intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn).
rewrite !nb_digits_spec, app_spec, List.length_app.
case (uint_eq_dec (nzhead d) Nil).
{ intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl. }
now intro H; rewrite (unorm_nzhead _ H).
Qed.
Lemma unorm_app_r d d' :
nb_digits (unorm (app d d')) <= nb_digits d' ->
unorm (app d d') = unorm d'.
Proof.
case (uint_eq_dec (nzhead (app d d')) Nil).
{ now unfold unorm; intro H; rewrite H, (nzhead_app_nil_r _ _ H). }
intro Ha; rewrite (unorm_nzhead _ Ha).
case (uint_eq_dec (nzhead d') Nil).
{ now intros H H'; exfalso; apply Ha; rewrite nzhead_app_r. }
intro Hd'; rewrite (unorm_nzhead _ Hd'); apply nzhead_app_r.
Qed.
Lemma norm_app_int d d' :
nb_digits d' < nb_digits (unorm (app (abs d) d')) ->
norm (app_int d d') = app_int (norm d) d'.
Proof.
case (uint_eq_dec d' Nil); [now intros->; rewrite !app_int_nil_r|intro Hd'].
case d as [d|d]; [now simpl; intro H; apply f_equal, unorm_app_l|].
simpl; unfold unorm.
case (uint_eq_dec (nzhead (app d d')) Nil).
{ intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt.
now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Nat.le_0_l..]. }
set (m := match nzhead _ with Nil => _ | _ => _ end).
intro Ha.
replace m with (nzhead (app d d')).
2:{ now unfold m; revert Ha; case nzhead. }
intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn).
case (uint_eq_dec (app (nzhead d) d') Nil).
{ intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt, Nat.le_0_l. }
clear m; set (m := match app _ _ with Nil => _ | _ => _ end).
intro Ha'.
replace m with (Neg (app (nzhead d) d')); [|now unfold m; revert Ha'; case app].
case (uint_eq_dec (nzhead d) Nil).
{ intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl. }
clear m; set (m := match nzhead _ with Nil => _ | _ => _ end).
intro Hd.
now replace m with (Neg (nzhead d)); [|unfold m; revert Hd; case nzhead].
Qed.
Lemma del_head_nb_digits d : del_head (nb_digits d) d = Nil.
Proof.
apply to_list_inj.
rewrite nb_digits_spec, del_head_spec_small; [|now simpl].
now rewrite List.skipn_all.
Qed.
Lemma del_tail_nb_digits d : del_tail (nb_digits d) d = Nil.
Proof. now unfold del_tail; rewrite <-nb_digits_rev, del_head_nb_digits. Qed.
Lemma del_head_app n d d' :
n <= nb_digits d -> del_head n (app d d') = app (del_head n d) d'.
Proof.
rewrite nb_digits_spec; intro Hn.
apply to_list_inj.
rewrite del_head_spec_small.
2:{ now rewrite app_spec, List.length_app, <- Nat.le_add_r. }
rewrite !app_spec, (del_head_spec_small _ _ Hn).
rewrite List.skipn_app.
now rewrite (proj2 (Nat.sub_0_le _ _) Hn).
Qed.
Lemma del_tail_app n d d' :
n <= nb_digits d' -> del_tail n (app d d') = app d (del_tail n d').
Proof.
rewrite nb_digits_spec; intro Hn.
unfold del_tail.
rewrite <-(of_list_to_list (rev (app d d'))), rev_spec, app_spec.
rewrite List.rev_app_distr, <-!rev_spec, <-app_spec, of_list_to_list.
rewrite del_head_app; [|now rewrite nb_digits_spec, rev_spec, List.length_rev].
apply to_list_inj.
rewrite rev_spec, !app_spec, !rev_spec.
now rewrite List.rev_app_distr, List.rev_involutive.
Qed.
Lemma del_tail_app_int n d d' :
n <= nb_digits d' -> del_tail_int n (app_int d d') = app_int d (del_tail n d').
Proof. now case d as [d|d]; simpl; intro H; rewrite del_tail_app. Qed.
Lemma app_del_tail_head n (d:uint) :
n <= nb_digits d -> app (del_tail n d) (del_head (nb_digits d - n) d) = d.
Proof.
rewrite nb_digits_spec; intro Hn; unfold del_tail.
rewrite <-(of_list_to_list (app _ _)), app_spec, rev_spec.
rewrite del_head_spec_small; [|now rewrite rev_spec, List.length_rev].
rewrite del_head_spec_small; [|now apply Nat.le_sub_l].
rewrite rev_spec.
set (n' := _ - n).
assert (Hn' : n = length (to_list d) - n').
{ now rewrite <- (Nat.add_sub (length (to_list d)) n), Nat.add_comm,
<- 2 Nat.add_sub_assoc, Nat.sub_diag; trivial. }
now rewrite Hn', <-List.firstn_skipn_rev, List.firstn_skipn, of_list_to_list.
Qed.
Lemma app_int_del_tail_head n (d:int) :
n <= nb_digits (abs d) ->
app_int (del_tail_int n d) (del_head (nb_digits (abs d) - n) (abs d)) = d.
Proof. now case d; clear d; simpl; intros u Hu; rewrite app_del_tail_head. Qed.
Lemma del_head_app_int_exact i f :
nb_digits f < nb_digits (unorm (app (abs i) f)) ->
del_head (nb_digits (unorm (app (abs i) f)) - nb_digits f) (unorm (app (abs i) f)) = f.
Proof.
simpl; intro Hnb; generalize Hnb; rewrite (unorm_app_l _ _ Hnb); clear Hnb.
replace (_ - _) with (nb_digits (unorm (abs i))).
- now rewrite del_head_app; [rewrite del_head_nb_digits|].
- rewrite !nb_digits_spec, app_spec, List.length_app.
symmetry; apply Nat.add_sub.
Qed.
Lemma del_tail_app_int_exact i f :
nb_digits f < nb_digits (unorm (app (abs i) f)) ->
del_tail_int (nb_digits f) (norm (app_int i f)) = norm i.
Proof.
simpl; intro Hnb.
rewrite (norm_app_int _ _ Hnb).
rewrite del_tail_app_int; [|now simpl].
now rewrite del_tail_nb_digits, app_int_nil_r.
Qed.
(** Normalization on little-endian numbers *)
Fixpoint nztail d :=
match d with
| Nil => Nil
| D0 d => match nztail d with Nil => Nil | d' => D0 d' end
| D1 d => D1 (nztail d)
| D2 d => D2 (nztail d)
| D3 d => D3 (nztail d)
| D4 d => D4 (nztail d)
| D5 d => D5 (nztail d)
| D6 d => D6 (nztail d)
| D7 d => D7 (nztail d)
| D8 d => D8 (nztail d)
| D9 d => D9 (nztail d)
end.
Definition lnorm d :=
match nztail d with
| Nil => zero
| d => d
end.
Lemma nzhead_revapp_0 d d' : nztail d = Nil ->
nzhead (revapp d d') = nzhead d'.
Proof.
revert d'. induction d; intros d' [=]; simpl; trivial.
destruct (nztail d); now rewrite IHd.
Qed.
Lemma nzhead_revapp d d' : nztail d <> Nil ->
nzhead (revapp d d') = revapp (nztail d) d'.
Proof.
revert d'.
induction d; intros d' H; simpl in *;
try destruct (nztail d) eqn:E;
(rewrite IHd;[reflexivity|discriminate]) || (now rewrite ?nzhead_revapp_0).
Qed.
Lemma nzhead_rev d : nztail d <> Nil ->
nzhead (rev d) = rev (nztail d).
Proof.
apply nzhead_revapp.
Qed.
Lemma rev_rev d : rev (rev d) = d.
Proof. now apply to_list_inj; rewrite !rev_spec, List.rev_involutive. Qed.
Lemma rev_nztail_rev d :
rev (nztail (rev d)) = nzhead d.
Proof.
destruct (uint_eq_dec (nztail (rev d)) Nil) as [H|H].
- rewrite H. unfold rev; simpl.
rewrite <- (rev_rev d). symmetry.
now apply nzhead_revapp_0.
- now rewrite <- nzhead_rev, rev_rev.
Qed.
Lemma nzhead_D0 u : nzhead (D0 u) = nzhead u.
Proof. reflexivity. Qed.
Lemma nzhead_iter_D0 n u : nzhead (Nat.iter n D0 u) = nzhead u.
Proof. now induction n. Qed.
Lemma revapp_nil_inv d d' : revapp d d' = Nil -> d = Nil /\ d' = Nil.
Proof.
revert d'.
induction d; simpl; intros d' H; auto; now apply IHd in H.
Qed.
Lemma rev_nil_inv d : rev d = Nil -> d = Nil.
Proof.
apply revapp_nil_inv.
Qed.
Lemma rev_lnorm_rev d :
rev (lnorm (rev d)) = unorm d.
Proof.
unfold unorm, lnorm.
rewrite <- rev_nztail_rev.
destruct nztail; simpl; trivial;
destruct rev eqn:E; trivial; now apply rev_nil_inv in E.
Qed.
Lemma nzhead_nonzero d d' : nzhead d <> D0 d'.
Proof.
induction d; easy.
Qed.
Lemma unorm_0 d : unorm d = zero <-> nzhead d = Nil.
Proof.
unfold unorm. split.
- generalize (nzhead_nonzero d).
destruct nzhead; intros H [=]; trivial. now destruct (H u).
- now intros ->.
Qed.
Lemma unorm_nonnil d : unorm d <> Nil.
Proof.
unfold unorm. now destruct nzhead.
Qed.
Lemma unorm_iter_D0 n u : unorm (Nat.iter n D0 u) = unorm u.
Proof. now induction n. Qed.
Lemma del_head_nonnil n u :
n < nb_digits u -> del_head n u <> Nil.
Proof.
now revert n; induction u; intro n;
[|case n; [|intro n'; simpl; intro H; apply IHu, Nat.succ_lt_mono]..].
Qed.
Lemma del_tail_nonnil n u :
n < nb_digits u -> del_tail n u <> Nil.
Proof.
unfold del_tail.
rewrite <-nb_digits_rev.
generalize (rev u); clear u; intro u.
intros Hu H.
generalize (rev_nil_inv _ H); clear H.
now apply del_head_nonnil.
Qed.
Lemma nzhead_involutive d : nzhead (nzhead d) = nzhead d.
Proof.
now induction d.
Qed.
Lemma nztail_involutive d : nztail (nztail d) = nztail d.
Proof.
rewrite <-(rev_rev (nztail _)), <-(rev_rev (nztail d)), <-(rev_rev d).
now rewrite !rev_nztail_rev, nzhead_involutive.
Qed.
Lemma unorm_involutive d : unorm (unorm d) = unorm d.
Proof.
unfold unorm.
destruct (nzhead d) eqn:E; trivial.
destruct (nzhead_nonzero _ _ E).
Qed.
Lemma norm_involutive d : norm (norm d) = norm d.
Proof.
unfold norm.
destruct d.
- f_equal. apply unorm_involutive.
- destruct (nzhead d) eqn:E; auto.
destruct (nzhead_nonzero _ _ E).
Qed.
Lemma lnzhead_neq_d0_head l l' : ~(lnzhead l = cons d0 l').
Proof. now induction l as [|h t Il]; [|case h]. Qed.
Lemma lnzhead_head_nd0 h t : h <> d0 -> lnzhead (cons h t) = cons h t.
Proof. now case h. Qed.
Lemma nzhead_del_tail_nzhead_eq n u :
nzhead u = u ->
n < nb_digits u ->
nzhead (del_tail n u) = del_tail n u.
Proof.
rewrite nb_digits_spec, <-List.length_rev.
intros Hu Hn.
apply to_list_inj; unfold del_tail.
rewrite nzhead_spec, rev_spec.
rewrite del_head_spec_small; [|now rewrite rev_spec; apply Nat.lt_le_incl].
rewrite rev_spec.
rewrite List.skipn_rev, List.rev_involutive.
generalize (f_equal to_list Hu) Hn; rewrite nzhead_spec; intro Hu'.
case (to_list u) as [|h t].
{ simpl; intro H; exfalso; revert H; apply Nat.le_ngt, Nat.le_0_l. }
intro Hn'; generalize (Nat.sub_gt _ _ Hn'); rewrite List.length_rev.
case (_ - _); [now simpl|]; intros n' _.
rewrite List.firstn_cons, lnzhead_head_nd0; [now simpl|].
intro Hh; revert Hu'; rewrite Hh; apply lnzhead_neq_d0_head.
Qed.
Lemma nzhead_del_tail_nzhead n u :
n < nb_digits (nzhead u) ->
nzhead (del_tail n (nzhead u)) = del_tail n (nzhead u).
Proof. apply nzhead_del_tail_nzhead_eq, nzhead_involutive. Qed.
Lemma unorm_del_tail_unorm n u :
n < nb_digits (unorm u) ->
unorm (del_tail n (unorm u)) = del_tail n (unorm u).
Proof.
case (uint_eq_dec (nzhead u) Nil).
- unfold unorm; intros->; case n; [now simpl|]; intro n'.
now simpl; intro H; exfalso; generalize (proj2 (Nat.succ_lt_mono _ _) H).
- unfold unorm.
set (m := match nzhead u with Nil => zero | _ => _ end).
intros H.
replace m with (nzhead u).
+ intros H'.
rewrite (nzhead_del_tail_nzhead _ _ H').
now generalize (del_tail_nonnil _ _ H'); case del_tail.
+ now unfold m; revert H; case nzhead.
Qed.
Lemma norm_del_tail_int_norm n d :
n < nb_digits (match norm d with Pos d | Neg d => d end) ->
norm (del_tail_int n (norm d)) = del_tail_int n (norm d).
Proof.
case d; clear d; intros u; simpl.
- now intro H; simpl; rewrite unorm_del_tail_unorm.
- case (uint_eq_dec (nzhead u) Nil); intro Hu.
+ now rewrite Hu; case n; [|intros n' Hn'; generalize (proj2 (Nat.succ_lt_mono _ _) Hn')].
+ set (m := match nzhead u with Nil => Pos zero | _ => _ end).
replace m with (Neg (nzhead u)); [|now unfold m; revert Hu; case nzhead].
unfold del_tail_int.
clear m Hu.
simpl.
intro H; generalize (del_tail_nonnil _ _ H).
rewrite (nzhead_del_tail_nzhead _ _ H).
now case del_tail.
Qed.
Lemma nzhead_app_nzhead d d' :
nzhead (app (nzhead d) d') = nzhead (app d d').
Proof.
unfold app.
rewrite <-(rev_nztail_rev d), rev_rev.
generalize (rev d); clear d; intro d.
generalize (nzhead_revapp_0 d d').
generalize (nzhead_revapp d d').
generalize (nzhead_revapp_0 (nztail d) d').
generalize (nzhead_revapp (nztail d) d').
rewrite nztail_involutive.
now case nztail;
[intros _ H _ H'; rewrite (H eq_refl), (H' eq_refl)
|intros d'' H _ H' _; rewrite H; [rewrite H'|]..].
Qed.
Lemma unorm_app_unorm d d' :
unorm (app (unorm d) d') = unorm (app d d').
Proof.
unfold unorm.
rewrite <-(nzhead_app_nzhead d d').
now case (nzhead d).
Qed.
Lemma norm_app_int_norm d d' :
unorm d' = zero ->
norm (app_int (norm d) d') = norm (app_int d d').
Proof.
case d; clear d; intro d; simpl.
- now rewrite unorm_app_unorm.
- unfold app_int, app.
rewrite unorm_0; intro Hd'.
rewrite <-rev_nztail_rev.
generalize (nzhead_revapp (rev d) d').
generalize (nzhead_revapp_0 (rev d) d').
now case_eq (nztail (rev d));
[intros Hd'' H _; rewrite (H eq_refl); simpl;
unfold unorm; simpl; rewrite Hd'
|intros d'' Hd'' _ H; rewrite H; clear H; [|now simpl];
set (r := rev _);
set (m := match r with Nil => Pos zero | _ => _ end);
assert (H' : m = Neg r);
[now unfold m; case_eq r; unfold r;
[intro H''; generalize (rev_nil_inv _ H'')|..]
|rewrite H'; unfold r; clear m r H'];
unfold norm;
rewrite rev_rev, <-Hd'';
rewrite nzhead_revapp; rewrite nztail_involutive; [|rewrite Hd'']..].
Qed.
Lemma unorm_app_l_nil d d' : nzhead d = Nil -> unorm (app d d') = unorm d'.
Proof.
now unfold unorm; rewrite <-nzhead_app_nzhead; intros->; rewrite app_nil_l.
Qed.