-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcma_noise_control.py
135 lines (127 loc) · 5.63 KB
/
cma_noise_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""Control Experiments of Evolution driven by pure noise."""
import nevergrad as ng
import sys
import os
from os.path import join
import torch
import numpy as np
import pickle as pkl
from easydict import EasyDict
from core.GAN_utils import upconvGAN
from core.CNN_scorers import TorchScorer
from time import time
import warnings
import cma
from sklearn.decomposition import PCA
from core.Optimizers import CholeskyCMAES, Genetic
from argparse import ArgumentParser
warnings.simplefilter("ignore", cma.evolution_strategy.InjectionWarning)
#%%
parser = ArgumentParser()
parser.add_argument('--rep', type=int, default=5)
parser.add_argument('--fevalN', type=int, default=3000)
# parser.add_argument('--RFfit', action='store_true') # will be false if not specified.
# parser.add_argument('--imgsize', nargs=2, type=int, default=[227, 227])
# parser.add_argument('--corner', nargs=2, type=int, default=[0, 0])
args = parser.parse_args()
budget = args.fevalN
repitition = args.rep
#%%
from core.Optimizers import Genetic, CholeskyCMAES, ZOHA_Sphere_lr_euclid, pycma_optimizer
popsize = 40
def get_optimizer(optimname, opts={}):
if optimname == "Genetic":
population_size = 40
mutation_rate = 0.25
mutation_size = 0.75
kT_multiplier = 2
n_conserve = 10
parental_skew = 0.75
optimizer = Genetic(4096, population_size, mutation_rate, mutation_size, kT_multiplier,
parental_skew=parental_skew, n_conserve=n_conserve)
elif optimname == "CholeskyCMAES":
optimizer = CholeskyCMAES(4096, population_size=40, init_sigma=3.0,
Aupdate_freq=10, init_code=np.zeros([1, 4096]))
elif optimname == "pycma":
optimizer = pycma_optimizer(4096, population_size=40, sigma0=2.0,
inopts={}, maximize=True)
elif optimname == "pycmaDiagonal":
optimizer = pycma_optimizer(4096, population_size=40, sigma0=2.0,
inopts={"CMA_diagonal": True}, maximize=True)
elif optimname == "ZOHA_Sphere_exp":
optimizer = ZOHA_Sphere_lr_euclid(4096, population_size=40, select_size=20,
lr=1.5, sphere_norm=300)
optimizer.lr_schedule(n_gen=75, mode="exp", lim=(50, 7.33), )
elif optimname == "ZOHA_Sphere_inv":
optimizer = ZOHA_Sphere_lr_euclid(4096, population_size=40, select_size=20,
lr=1.5, sphere_norm=300)
optimizer.lr_schedule(n_gen=75, mode="inv", lim=(50, 7.33), )
else:
raise NotImplementedError
return optimizer
#%%
# rootdir = r"D:\Github\ActMax-Optimizer-Dev\optim_log"
if sys.platform == "linux":
rootdir = "/scratch1/fs1/crponce/noise_optim_ctrl"
else:
rootdir = r"D:\Github\ActMax-Optimizer-Dev\optim_log2"
os.makedirs(rootdir, exist_ok=True)
optimlist = ["CholeskyCMAES", "pycma", "pycmaDiagonal", "ZOHA_Sphere_exp"]#
for repi in range(repitition):
RND = np.random.randint(100000)
for optimname in optimlist:
savedir = join(rootdir, optimname)
os.makedirs(savedir, exist_ok=True)
optim = get_optimizer(optimname)
codes = optim.get_init_pop() # random population on the sphere.
generations = []
scores_col = []
cleanscore_col = []
codes_col = []
nGeneration = int(budget / popsize) #
t0 = time()
for i in range(nGeneration):
# with torch.no_grad():
# cleanscores = scorer.score(G.visualize(torch.tensor(
# codes, dtype=torch.float32, device="cuda"))) #.reshape([-1,4096])
# scores = add_noise(cleanscores, noise_level)
nCodes = np.array(codes).reshape([-1, 4096]).shape[0]
scores = np.random.randn(nCodes)
newcodes = optim.step_simple(scores, codes, verbosity=0)
scores_col.append(scores)
codes_col.append(codes)
generations.extend([i] * len(scores))
codes = newcodes
t1 = time()
scores_all = np.concatenate(scores_col, axis=0)
codes_all = np.concatenate(codes_col, axis=0)
generations = np.array(generations)
codes = np.array(codes)
final_norm = np.linalg.norm(codes, axis=1).mean()
runtime = t1 - t0
# if optimname in ["CholeskyCMAES"]:
np.savez(join(savedir, r"noisectrl_%s_rep%05d.npz") % (optimname, RND),
generations=generations, codes_all=codes_all,
scores_all=scores_all, runtime=runtime)
meancodes = np.array([codes_all[generations == i, :].mean(axis=0)
for i in range(generations.max() + 1)])
PCmachine_m = PCA(n_components=75).fit(meancodes)
PCcoefs_mean = PCmachine_m.transform(meancodes)
expvar_ratio = PCmachine_m.explained_variance_ratio_
cumexpvar = expvar_ratio.cumsum()
np.savez(join(savedir, "%s_meanPCA_coef_rep%05d.npz" \
% (optimname, RND)),
PCcoefs_mean=PCcoefs_mean, PCvecs=PCmachine_m.components_,
expvar_ratio=expvar_ratio, cumexpvar=cumexpvar
)
PCmachine = PCA(n_components=75).fit(codes_all)
PCcoefs = PCmachine.transform(codes_all)
PCcoefs_mean = PCmachine.transform(meancodes)
expvar_ratio = PCmachine.explained_variance_ratio_
cumexpvar = expvar_ratio.cumsum()
np.savez(join(savedir, "%s_PCA_coef_rep%05d.npz" \
% (optimname, RND)),
PCcoefs=PCcoefs, PCcoefs_mean=PCcoefs_mean,
PCvecs=PCmachine.components_,
expvar_ratio=expvar_ratio, cumexpvar=cumexpvar
)