-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoptim_baseline.py
165 lines (160 loc) · 6.77 KB
/
optim_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Playground for reference optimizers
#
import cma
import pyswarms as ps
# from pyswarms.utils.functions import single_obj as fx
import nevergrad as ng
import torch
import numpy as np
from core.GAN_utils import upconvGAN
from core.CNN_scorers import TorchScorer
# https://github.com/ljvmiranda921/pyswarms
#%%
G = upconvGAN("fc6")
G.eval().cuda()
scorer = TorchScorer("resnet50") # _linf8
scorer.select_unit((None,'.Linearfc',1))
#%% Test out these optimizers for out function
def objfunc(code):
return -scorer.score(G.visualize_batch_np(code))
bounds = (-6*np.ones(4096), 6*np.ones(4096))
# Set-up hyperparameters
options = {'c1': 0.5, 'c2': 0.3, 'w':0.7}
bh_strategy = "nearest" # "random" # "nearest is much better than random
# Call instance of PSO
optimizer = ps.single.GlobalBestPSO(n_particles=40, dimensions=4096, bounds=bounds, bh_strategy=bh_strategy, options=options)
# Perform optimization
best_cost, best_pos = optimizer.optimize(objfunc, iters=100)
#%%
def objfunc(code):
return -scorer.score(G.visualize_batch_np(code[np.newaxis,:]))
es = cma.CMAEvolutionStrategy(4096 * [0], 3.0)
es.optimize(objfunc, iterations=100, maxfun=4000)
# 100 2800 -3.126652526855469e+01 1.0e+00 2.62e+00 3e+00 3e+00 2:30.7
#%%
es = cma.CMAEvolutionStrategy(4096 * [0], 3.0)
es.optimize(objfunc, maxfun=4000)
#
#%%
es = cma.CMAEvolutionStrategy(4096 * [0], 2.0)
es.optimize(objfunc, iterations=100, maxfun=4000)
# 100 2800 -3.266315460205078e+01 1.0e+00 1.74e+00 2e+00 2e+00 2:46.8
#%%
es = cma.CMAEvolutionStrategy(4096 * [0], 2.0)
es.optimize(objfunc, maxfun=4000)
# 141 3948 -3.340768432617188e+01 1.0e+00 1.69e+00 2e+00 2e+00 4:12.0
#%%
es = cma.CMAEvolutionStrategy(4096 * [0], 1.5)
es.optimize(objfunc, maxfun=4000)
# 141 3948 -3.605181503295898e+01 1.0e+00 1.26e+00 1e+00 1e+00 4:16.4
#%%
es = cma.CMAEvolutionStrategy(4096 * [0], 1.0)
es.optimize(objfunc, iterations=100, maxfun=4000)
# 100 2800 -3.093707466125488e+01 1.0e+00 8.72e-01 9e-01 9e-01 2:49.4
#%%
from core.insilico_exps import ExperimentEvolution
Exp = ExperimentEvolution(("resnet50", '.Linearfc', 1))
Exp.run()
# synth img scores: mean 27.614 +- std 2.102
#%%
def score_batch(z, ):
return -scorer.score(G.visualize_batch_np(z.reshape([-1,4096])))
pop_size = 28
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)),)
optimizer = ng.optimizers.TBPSA(parametrization=instrum, budget=2800, num_workers=10,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
# Updating fitness with value [-4.03109121]
#%%
pop_size = 28
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.PSO(parametrization=instrum, budget=2800, num_workers=10,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
# {'optimistic': MultiValue<mean: -5.7814459800720215, count: 1,
# 'pessimistic': MultiValue<mean: -5.7814459800720215, count: 1,
# 'average': MultiValue<mean: -5.7814459800720215, count: 1,
#%% Obvious better than PSO & TBPSA which failed miserably.
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.NGO(parametrization=instrum, budget=2800, num_workers=10,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
# -12.787981986999512, -10.14200987134661
#%%
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.ES(parametrization=instrum, budget=2800, num_workers=10,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
#%%
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.CMA(parametrization=instrum, budget=2800, num_workers=10,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
#%%
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.DiagonalCMA(parametrization=instrum, budget=2800, num_workers=10,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
# -11.705142974853516; -11.705142974853516; -11.705142974853516
#%%
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.SQPCMA(parametrization=instrum, budget=2800, num_workers=10,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
# -2.43425274
#%%
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.NelderMead(parametrization=instrum, budget=2800, num_workers=1,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
#%%
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.OnePlusOne(parametrization=instrum, budget=2800, num_workers=1,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
# -12.376550674438477 -12.376550674438477 -12.376550674438477
# not bad not worse.
#%%
pop_size = 28
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)).set_bounds(-5, 5),)
optimizer = ng.optimizers.BO(parametrization=instrum, budget=2800, num_workers=10,)
optimizer.minimize(score_batch, verbosity=True, batch_mode=True)
# it's excruciatingly slow, cannot finish.
#%%
#%%
while optimizer.num_ask < optimizer.budget:
xbatch = []
for i in range(pop_size):
x = optimizer.ask()
xbatch.append(x.args[0])
loss = score_batch(np.array(xbatch), ) #**x.kwargs
for x, loss_single in zip(xbatch,loss):
optimizer.tell(xbatch, loss_single)
print("feval %d : %.3f+-%.3f"%(optimizer.num_ask, loss.mean(), loss.std()))
#%%
# very counter intuitive..... strange. how to ask for multiple candidates and evaluate multiple
#%%
pop_size = 28
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)),)
optimizer = ng.optimizers.CMA(parametrization=instrum, budget=2800, num_workers=4)
optimizer.minimize(score_batch, verbosity=True)
# Updating fitness with value [-37.58397293]
#%%
pop_size = 28
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)),)
optimizer = ng.optimizers.PSO(parametrization=instrum, budget=2800, num_workers=4)
optimizer.minimize(score_batch, verbosity=True)
#%%
pop_size = 28
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)),)
optimizer = ng.optimizers.NGOpt(parametrization=instrum, budget=2800, num_workers=4)
optimizer.minimize(score_batch, verbosity=True)
#%%
pop_size = 28
instrum = ng.p.Instrumentation(ng.p.Array(shape=(4096,)),)
optimizer = ng.optimizers.BO(parametrization=instrum, budget=2800, num_workers=4)
optimizer.minimize(score_batch, verbosity=True)
#%%
# while optimizer.num_ask < optimizer.budget:
# xbatch = []
# for i in range(pop_size):
# x = optimizer.ask()
# xbatch.append(x.args[0])
#
# loss = score_batch(np.array(xbatch), ) #**x.kwargs
# optimizer.tell(x, loss)
# print("feval %d : %.3f+-%.3f"%(optimizer.num_ask, loss.mean(), loss.std()))
#
# recommendation = optimizer.provide_recommendation()
# print(recommendation.value)