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Subgradient Descent, continuted
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Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question to ask is if

these rates are best possible or not. Surprisingly, the rate can indeed not be improved
in general.

Theorem (Nesterov)

For any T < d — 1 and starting point xq, there is a function f in the problem class of
B-Lipschitz functions over R?, such that any (sub)gradient method has an objective

error at least RB
f(xr) — f(x*) > m .
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Smooth (non-differentiable) functions?
They don't exist (Exercise 26)!

f(@) = ol

At 0, graph can't be below a tangent paraboloid.
Can we still improve over O(1/¢2) steps for Lipschitz functions?

Yes, if we also require strong convexity (graph is above not too flat tangent
paraboloids).

f (@)

f@1) + gf (= - Il).»
’ @)+ g (x — m3)
T f(@) + g5 (= @)
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Strongly convex functions

“Not too flat”

Straightforward generalization to the non-differentiable case:

Definition
Let f: dom(f) — R be convex, u € Ry, > 0. Function f is called strongly convex
(with parameter p) if

F3) 2 £ +87 (v =x) + Slx—yI’. vx,y € dom(f), Vg € 9f(x).

EPFL Machine Learning and Optimization Laboratory

5/24



Strongly convex functions: characterization via “normal” convexity

Lemma (Exercise 28)

Let f: dom(f) — R be convex, dom(f) open, i € Ry, > 0. f is strongly convex
with parameter i if and only if f,, : dom(f) — R defined by

Julx) = 7(x) = S Ix]I*, x € dom({)

is convex.
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Tame strong convexity

For fast convergence, we consider additional assumptions.
Smoothness? - Not an option in the non-differentiable case (Exercise 26).

Instead: assume that all subgradients g; that we encounter during the algorithm are
bounded in norm.

May be realistic if. . .

> we start close to optimality

» we run projected subgradient descent over a compact set X
May also fail!

» Over RY, strong convexity and bounded subgradients contradict each other!
(Exercise 30).
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Tame strong convexity: O(1/¢) steps

Theorem

Let f: R? — R be strongly convex with parameter ;i > 0 and let x* be the unique
global minimum of f. With decreasing step size

2
=—, t>0,
T )
subgradient descent yields
T
2 2B?
- t- — ) < _—
f(T<T+1> 2 Xt) 100 < 1)
where B = max]_, ||g||. 0

convex combination of iterates
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Tame strong convexity: O(1/¢) steps Il
Proof.
Vanilla analysis (g¢ € 0f(x)):

Ve 1
g/ (x¢ — x*) = gl + 5— (Ilxe = x*|* = |xe1 — x*||%) .
2 2’)/15

Lower bound from strong convexity:
7
g (% —x") = f(xi) = F(x") + 5l — x|

Putting it together (with ||g:||? < B?):

2 -1 _ -1
f(xt) _ f(X*) < B + (715 /'L)

2

||x¢ — x*

2
Summing over t = 1,...,T: we used to have telescoping (y; = v,u =0)...
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Tame strong convexity: O(1/¢) steps Il

Proof.

So far we have:

BZ -1 -1
e e L e L B
To get telescoping, we would need fy[l = 71;11 — u.
Works with ;' = 1u(1 +t), but not v, " = u(1 4 t)/2 (the choice here).
Exercise 31: what happens with ~; ' = ;(1 +t)?

Now: what happens with v, % = (1 4 t)/2 (the choice here)?
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Tame strong convexity: O(1/¢) steps IV

Proof.

So far we have:

BQ,y -1 _ ,yfl
Pl — o) < 2004 OB e s - ey 7

Plug in ;' = u(1 +t)/2 and multiply with ¢ on both sides:

BZ
(000~ 66)) < s + 4 (4= 1) e = (1 Dt e )
BQ
< (=D = = (o e ).
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Tame strong convexity: O(1/¢) steps V

Proof.
We have

* BQt Iu’ * *
E (F0a) = 10) < gy (= D I = o Dl =)

B2 w * |12 *(|2
§7+Z t(t—l) ”Xt—X ” —(t—i—l)t”Xt—f—l—X H .
Now we get telescoping. ..

T B2
o

T 2
Dot (fxe) = f(x)) < i

t=1 H

RS

(0-T(T+1) Jxri1 —x*|*) <
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Tame strong convexity: O(1/¢) steps VI
Proof.

Almost done:

T
>t (1) = F60) < T 0= T4 ) s - ) < T2

Since

Jensen's inequality yields

2 T 9 T
f(T(T—I—l);t'Xt> —f(X ) < mzt (f(Xt)—f(X ))

t=1
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Tame strong convexity: Discussion

T
2 2B?
— = Ntex |- f(x) < —
f(T(T+1>§ > 160 < )
Weighted average of iterates achieves the bound (later iterates have more weight)

Bound is independent of initial distance ||xo — x*||. ..

... but not really: B typically depends on ||xg — x*|| (for example, B = O(||xp — x*||)
for quadratic functions)

Recall: we can only hope that B is small (can be checked while running the algorithm)

What if we don’t know the parameter i of strong convexity?

— Bad luck! In practice, try some u's, pick best solution obtained
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Chapter 5

Stochastic Gradient Descent
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Stochastic gradient descent

Many objective functions are sum structured:

Fo =3 i)
=1

Example: f; is the cost function of the i-th observation, taken from a training set of n
observation.

Evaluating V f(x) of a sum-structured function is expensive (sum of n gradients).
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Stochastic gradient descent: the algorithm

choose xy € R,

sample ¢ € [n] uniformly at random

Xe1 i= Xg — VeV fi(%e).

for times t = 0,1,..., and stepsizes y; > 0.

Only update with the gradient of f; instead of the full gradient!
Iteration is n times cheaper than in full gradient descent.

The vector g, := V fi(x;) is called a stochastic gradient.

g: is a vector of d random variables, but we will also simply call this a random variable.
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Unbiasedness

Can't use convexity
Fxe) = fF(x) < &/ (xe = x*)

on top of the vanilla analysis, as this may hold or not hold, depending on how the
stochastic gradient g; turns out.

We will show (and exploit): the inequality holds in expectation.

Fot this, we use that by definition, g; is an unbiased estimate of V f(x;):

E[g:|x; = x] = %ZVfi(x) =Vf(x), xeR%.
i=1
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The inequality f(x;) — f(x*) < g/ (x; — x*) holds in expectation

For any fixed x, linearity of conditional expectations (Exercise 32) yields

E[gtT(X - X*)‘Xt =x| = E[gt‘xt = X]T(X —x*) = Vf(x)"(x —x*).

Event {x; = x} can occur only for x in some finite set X (x; is determined by the
choices of indices in all iterations so far). Partition Theorem (Exercise 32):

E[gj(xt -x")] = Z E[gtT(X - x*)‘xt = x| prob(x; = x)
xeX

= Z Vf(x)"(x —x*) prob(x; = x) = E[Vf(xt)T(xt —x")].
xeX

Hence, J convexity

Elg! (x¢ —x")] = E[V/(x¢) " (xt = x")] = E[f(xe) — f(x")].
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Bounded stochastic gradients: O(1/¢?) steps
Theorem

Let f: R? = R be convex and differentiable, x* a global minimum, furthermore,
suppose that ||xo — x*|| < R, and that E[||g:||*] < B? for all t. Choosing the constant

stepsize
R
i —
BVT
stochastic gradient descent yields
T—1
1 RB
— E|f(x)]| — f(x*) < —.
T g [f( t)] f( ) —= \/T

Same procedure as every week. . . except

» we assume bounded stochastic gradients in expectation;
» error bound holds in expectation.
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Bounded stochastic gradients: O(1/¢?) steps Il
Proof.

Vanilla analysis (this time, g; is the stochastic gradient):

T—

,_.

T-1
’7 2 1 * 112
(x¢ — x* *E + —||xo — x™||*.
t:Og t 5 2 llgell 27” 0 |

Taking expectations and using “convexity in expectation”:

T-1 T-1 - T— 1
E[f(x) - f(x")] < Y Elg/ (x —x")] < 4 Z [llgell”] + 5= llxo —x*|°
2 2y
t=0 t=0 t=0
¥ n2 2
< —B°T —R .
-2 + 2
Result follows as every week (optimize 7) ... O
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Convergence rate comparison: SGD vs GD

Classic GD: For vanilla analysis, we assumed that |V f(x)||? < B2y for all x € R¢,
where Bgp was a constant. So for sum-objective:

Pswnl' <ot

SGD: Assuming same for the expected squared norms of our stochastic gradients, now
called BZ.p.

1
EZHsz‘(X)”Q < Béep vx

So by Jensen's inequality for ||.||

2
2
LY V)| < 2 VG| ~ Bl
» BZp can be smaller than BZ.p, but often comparable.
Very similar if larger mini-batches are used.

2
> Bep &
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