
Optimization for Machine Learning
CS-439

Lecture 5: Subgradient and Stochastic Gradient Descent

Martin Jaggi

EPFL – github.com/epfml/OptML_course

March 22, 2019

github.com/epfml/OptML_course

Chapter 4

Subgradient Descent, continuted

EPFL Machine Learning and Optimization Laboratory 2/24

Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question to ask is if
these rates are best possible or not. Surprisingly, the rate can indeed not be improved
in general.

Theorem (Nesterov)

For any T ≤ d− 1 and starting point x0, there is a function f in the problem class of
B-Lipschitz functions over Rd, such that any (sub)gradient method has an objective
error at least

f(xT)− f(x?) ≥
RB

2(1 +
√
T + 1)

.

EPFL Machine Learning and Optimization Laboratory 3/24

Smooth (non-differentiable) functions?
They don’t exist (Exercise 26)!

x

f(x) = |x|

0

At 0, graph can’t be below a tangent paraboloid.

Can we still improve over O(1/ε2) steps for Lipschitz functions?

Yes, if we also require strong convexity (graph is above not too flat tangent
paraboloids).

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

(⇐⇒ (g,−1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

EPFL Machine Learning and Optimization Laboratory 4/24

Strongly convex functions

“Not too flat”

Straightforward generalization to the non-differentiable case:

Definition

Let f : dom(f)→ R be convex, µ ∈ R+, µ > 0. Function f is called strongly convex
(with parameter µ) if

f(y) ≥ f(x) + g>(y − x) +
µ

2
‖x− y‖2, ∀x,y ∈ dom(f), ∀g ∈ ∂f(x).

EPFL Machine Learning and Optimization Laboratory 5/24

Strongly convex functions: characterization via “normal” convexity

Lemma (Exercise 28)

Let f : dom(f)→ R be convex, dom(f) open, µ ∈ R+, µ > 0. f is strongly convex
with parameter µ if and only if fµ : dom(f)→ R defined by

fµ(x) = f(x)− µ

2
‖x‖2 , x ∈ dom(f)

is convex.

EPFL Machine Learning and Optimization Laboratory 6/24

Tame strong convexity

For fast convergence, we consider additional assumptions.

Smoothness? - Not an option in the non-differentiable case (Exercise 26).

Instead: assume that all subgradients gt that we encounter during the algorithm are
bounded in norm.

May be realistic if. . .

I we start close to optimality

I we run projected subgradient descent over a compact set X

May also fail!

I Over Rd, strong convexity and bounded subgradients contradict each other!
(Exercise 30).

EPFL Machine Learning and Optimization Laboratory 7/24

Tame strong convexity: O(1/ε) steps

Theorem

Let f : Rd → R be strongly convex with parameter µ > 0 and let x? be the unique
global minimum of f . With decreasing step size

γt :=
2

µ(t+ 1)
, t > 0,

subgradient descent yields

f

(
2

T (T + 1)

T∑
t=1

t · xt
)
− f(x?) ≤ 2B2

µ(T + 1)
,

where B = maxTt=1 ‖gt‖. ↑
convex combination of iterates

EPFL Machine Learning and Optimization Laboratory 8/24

Tame strong convexity: O(1/ε) steps II

Proof.

Vanilla analysis (gt ∈ ∂f(xt)):

g>t (xt − x?) =
γt
2
‖gt‖2 +

1

2γt

(
‖xt − x?‖2 − ‖xt+1 − x?‖2

)
.

Lower bound from strong convexity:

g>t (xt − x?) ≥ f(xt)− f(x?) +
µ

2
‖xt − x?‖2.

Putting it together (with ‖gt‖2 ≤ B2):

f(xt)− f(x?) ≤
B2γt
2

+
(γ−1t − µ)

2
‖xt − x?‖2 − γ−1t

2
‖xt+1 − x?‖2 .

Summing over t = 1, . . . , T : we used to have telescoping (γt = γ, µ = 0). . .

EPFL Machine Learning and Optimization Laboratory 9/24

Tame strong convexity: O(1/ε) steps III

Proof.

So far we have:

f(xt)− f(x?) ≤
B2γt
2

+
(γ−1t − µ)

2
‖xt − x?‖2 − γ−1t

2
‖xt+1 − x?‖2 .

To get telescoping, we would need γ−1t = γ−1t+1 − µ.

Works with γ−1t = µ(1 + t), but not γ−1t = µ(1 + t)/2 (the choice here).

Exercise 31: what happens with γ−1t = µ(1 + t)?

Now: what happens with γ−1t = µ(1 + t)/2 (the choice here)?

EPFL Machine Learning and Optimization Laboratory 10/24

Tame strong convexity: O(1/ε) steps IV

Proof.

So far we have:

f(xt)− f(x?) ≤
B2γt
2

+
(γ−1t − µ)

2
‖xt − x?‖2 − γ−1t

2
‖xt+1 − x?‖2 .

Plug in γ−1t = µ(1 + t)/2 and multiply with t on both sides:

t ·
(
f(xt)−f(x?)

)
≤ B2t

µ(t+ 1)
+
µ

4

(
t(t− 1) ‖xt−x?‖2 − (t+ 1)t ‖xt+1−x?‖2

)
≤ B2

µ
+
µ

4

(
t(t− 1) ‖xt − x?‖2 − (t+ 1)t ‖xt+1 − x?‖2

)
.

EPFL Machine Learning and Optimization Laboratory 11/24

Tame strong convexity: O(1/ε) steps V

Proof.

We have

t ·
(
f(xt)−f(x?)

)
≤ B2t

µ(t+ 1)
+
µ

4

(
t(t− 1) ‖xt−x?‖2 − (t+ 1)t ‖xt+1−x?‖2

)
≤ B2

µ
+
µ

4

(
t(t− 1) ‖xt − x?‖2 − (t+ 1)t ‖xt+1 − x?‖2

)
.

Now we get telescoping. . .

T∑
t=1

t ·
(
f(xt)− f(x?)

)
≤ TB2

µ
+
µ

4

(
0− T (T + 1) ‖xT+1 − x?‖2

)
≤ TB2

µ
.

EPFL Machine Learning and Optimization Laboratory 12/24

Tame strong convexity: O(1/ε) steps VI
Proof.

Almost done:

T∑
t=1

t ·
(
f(xt)− f(x?)

)
≤ TB2

µ
+
µ

4

(
0− T (T + 1) ‖xT+1 − x?‖2

)
≤ TB2

µ
.

Since

2

T (T + 1)

T∑
t=1

t = 1,

Jensen’s inequality yields

f

(
2

T (T + 1)

T∑
t=1

t · xt
)
− f(x?) ≤ 2

T (T + 1)

T∑
t=1

t ·
(
f(xt)− f(x?)

)
.

EPFL Machine Learning and Optimization Laboratory 13/24

Tame strong convexity: Discussion

f

(
2

T (T + 1)

T∑
t=1

t · xt
)
− f(x?) ≤ 2B2

µ(T + 1)
,

Weighted average of iterates achieves the bound (later iterates have more weight)

Bound is independent of initial distance ‖x0 − x?‖. . .

. . . but not really: B typically depends on ‖x0 − x?‖ (for example, B = O(‖x0 − x?‖)
for quadratic functions)

Recall: we can only hope that B is small (can be checked while running the algorithm)

What if we don’t know the parameter µ of strong convexity?

→ Bad luck! In practice, try some µ’s, pick best solution obtained

EPFL Machine Learning and Optimization Laboratory 14/24

Chapter 5

Stochastic Gradient Descent

EPFL Machine Learning and Optimization Laboratory 15/24

Stochastic gradient descent

Many objective functions are sum structured:

f(x) =
1

n

n∑
i=1

fi(x).

Example: fi is the cost function of the i-th observation, taken from a training set of n
observation.

Evaluating ∇f(x) of a sum-structured function is expensive (sum of n gradients).

EPFL Machine Learning and Optimization Laboratory 16/24

Stochastic gradient descent: the algorithm

choose x0 ∈ Rd.

sample i ∈ [n] uniformly at random

xt+1 := xt − γt∇fi(xt).

for times t = 0, 1, . . . , and stepsizes γt ≥ 0.

Only update with the gradient of fi instead of the full gradient!

Iteration is n times cheaper than in full gradient descent.

The vector gt := ∇fi(xt) is called a stochastic gradient.

gt is a vector of d random variables, but we will also simply call this a random variable.

EPFL Machine Learning and Optimization Laboratory 17/24

Unbiasedness

Can’t use convexity
f(xt)− f(x?) ≤ g>t (xt − x?)

on top of the vanilla analysis, as this may hold or not hold, depending on how the
stochastic gradient gt turns out.

We will show (and exploit): the inequality holds in expectation.

Fot this, we use that by definition, gt is an unbiased estimate of ∇f(xt):

E
[
gt
∣∣xt = x

]
=

1

n

n∑
i=1

∇fi(x) = ∇f(x), x ∈ Rd.

EPFL Machine Learning and Optimization Laboratory 18/24

The inequality f(xt)− f(x?) ≤ g>t (xt − x?) holds in expectation
For any fixed x, linearity of conditional expectations (Exercise 32) yields

E
[
g>t (x− x?)

∣∣xt = x
]
= E

[
gt
∣∣xt = x

]>
(x− x?) = ∇f(x)>(x− x?).

Event {xt = x} can occur only for x in some finite set X (xt is determined by the
choices of indices in all iterations so far). Partition Theorem (Exercise 32):

E
[
g>t (xt − x?)

]
=

∑
x∈X

E
[
g>t (x− x?)

∣∣xt = x
]
prob(xt = x)

=
∑
x∈X
∇f(x)>(x− x?) prob(xt = x) = E

[
∇f(xt)>(xt − x?)

]
.

Hence, ↓ convexity

E
[
g>t (xt − x?)

]
= E

[
∇f(xt)>(xt − x?)

]
≥ E

[
f(xt)− f(x?)

]
.

EPFL Machine Learning and Optimization Laboratory 19/24

Bounded stochastic gradients: O(1/ε2) steps
Theorem

Let f : Rd → R be convex and differentiable, x? a global minimum; furthermore,
suppose that ‖x0 − x?‖ ≤ R, and that E

[
‖gt‖2

]
≤ B2 for all t. Choosing the constant

stepsize

γ :=
R

B
√
T

stochastic gradient descent yields

1

T

T−1∑
t=0

E
[
f(xt)

]
− f(x?) ≤ RB√

T
.

Same procedure as every week. . . except

I we assume bounded stochastic gradients in expectation;
I error bound holds in expectation.

EPFL Machine Learning and Optimization Laboratory 20/24

Bounded stochastic gradients: O(1/ε2) steps II
Proof.

Vanilla analysis (this time, gt is the stochastic gradient):

T−1∑
t=0

g>t (xt − x?) ≤ γ

2

T−1∑
t=0

‖gt‖2 +
1

2γ
‖x0 − x?‖2.

Taking expectations and using “convexity in expectation”:

T−1∑
t=0

E
[
f(xt)− f(x?)

]
≤

T−1∑
t=0

E
[
g>t (xt − x?)

]
≤ γ

2

T−1∑
t=0

E
[
‖gt‖2

]
+

1

2γ
‖x0 − x?‖2

≤ γ

2
B2T +

1

2γ
R2.

Result follows as every week (optimize γ) . . .

EPFL Machine Learning and Optimization Laboratory 21/24

Convergence rate comparison: SGD vs GD
Classic GD: For vanilla analysis, we assumed that ‖∇f(x)‖2 ≤ B2

GD for all x ∈ Rd,
where BGD was a constant. So for sum-objective:∥∥∥ 1

n

∑
i

∇fi(x)
∥∥∥2 ≤ B2

GD ∀x

SGD: Assuming same for the expected squared norms of our stochastic gradients, now
called B2

SGD.
1

n

∑
i

∥∥∇fi(x)∥∥2 ≤ B2
SGD ∀x

So by Jensen’s inequality for ‖.‖2

I B2
GD ≈

∥∥∥ 1
n

∑
i∇fi(x)

∥∥∥2 ≤ 1
n

∑
i

∥∥∇fi(x)∥∥2 ≈ B2
SGD

I B2
GD can be smaller than B2

SGD, but often comparable.
Very similar if larger mini-batches are used.

EPFL Machine Learning and Optimization Laboratory 22/24

