Optimization for Machine Learning CS-439

Lecture 5: Subgradient and Stochastic Gradient Descent

Martin Jaggi

EPFL - github.com/epfml/OptML_course

March 22, 2019

Chapter 4

Subgradient Descent, continuted

Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question to ask is if these rates are best possible or not. Surprisingly, the rate can indeed not be improved in general.

Theorem (Nesterov)

For any $T \leq d-1$ and starting point \mathbf{x}_0 , there is a function f in the problem class of *B*-Lipschitz functions over \mathbb{R}^d , such that any (sub)gradient method has an objective error at least

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \ge \frac{RB}{2(1 + \sqrt{T+1})}$$

Smooth (non-differentiable) functions?

They don't exist (Exercise 26)!

At 0, graph can't be below a tangent paraboloid.

Can we still improve over $O(1/\varepsilon^2)$ steps for Lipschitz functions?

Yes, if we also require strong convexity (graph is above not too flat tangent paraboloids).

Strongly convex functions

"Not too flat"

Straightforward generalization to the non-differentiable case:

Definition

Let $f : \mathbf{dom}(f) \to \mathbb{R}$ be convex, $\mu \in \mathbb{R}_+, \mu > 0$. Function f is called strongly convex (with parameter μ) if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^{\top}(\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbf{dom}(f), \ \forall \mathbf{g} \in \partial f(\mathbf{x}).$$

Strongly convex functions: characterization via "normal" convexity

Lemma (Exercise 28)

Let $f : \mathbf{dom}(f) \to \mathbb{R}$ be convex, $\mathbf{dom}(f)$ open, $\mu \in \mathbb{R}_+, \mu > 0$. f is strongly convex with parameter μ if and only if $f_{\mu} : \mathbf{dom}(f) \to \mathbb{R}$ defined by

$$f_{\mu}(\mathbf{x}) = f(\mathbf{x}) - \frac{\mu}{2} \|\mathbf{x}\|^2, \quad \mathbf{x} \in \mathbf{dom}(f)$$

is convex.

Tame strong convexity

For fast convergence, we consider additional assumptions.

Smoothness? - Not an option in the non-differentiable case (Exercise 26).

Instead: assume that all subgradients g_t that we encounter during the algorithm are bounded in norm.

May be realistic if...

- we start close to optimality
- \blacktriangleright we run projected subgradient descent over a compact set X

May also fail!

 Over R^d, strong convexity and bounded subgradients contradict each other! (Exercise 30).

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be strongly convex with parameter $\mu > 0$ and let \mathbf{x}^* be the unique global minimum of f. With decreasing step size

$$\gamma_t := \frac{2}{\mu(t+1)}, \quad t > 0,$$

subgradient descent yields

$$f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T}t\cdot\mathbf{x}_{t}\right) - f(\mathbf{x}^{\star}) \leq \frac{2B^{2}}{\mu(T+1)},$$

where $B = \max_{t=1}^{T} \|\mathbf{g}_t\|$. \uparrow convex combination of iterates

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps II Proof.

Vanilla analysis ($\mathbf{g}_t \in \partial f(\mathbf{x}_t)$):

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma_t}{2} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma_t} \left(\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right).$$

Lower bound from strong convexity:

$$\mathbf{g}_t^\top(\mathbf{x}_t - \mathbf{x}^\star) \ge f(\mathbf{x}_t) - f(\mathbf{x}^\star) + \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^\star\|^2.$$

Putting it together (with $\|\mathbf{g}_t\|^2 \leq B^2$):

$$f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \le \frac{B^2 \gamma_t}{2} + \frac{(\gamma_t^{-1} - \mu)}{2} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \frac{\gamma_t^{-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2.$$

Summing over $t = 1, \ldots, T$: we used to have telescoping $(\gamma_t = \gamma, \mu = 0) \ldots$

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps III

Proof.

So far we have:

$$f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \le \frac{B^2 \gamma_t}{2} + \frac{(\gamma_t^{-1} - \mu)}{2} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \frac{\gamma_t^{-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2.$$

To get telescoping, we would need $\gamma_t^{-1}=\gamma_{t+1}^{-1}-\mu.$

Works with $\gamma_t^{-1} = \mu(1+t)$, but not $\gamma_t^{-1} = \mu(1+t)/2$ (the choice here).

Exercise 31: what happens with $\gamma_t^{-1} = \mu(1+t)$?

Now: what happens with $\gamma_t^{-1} = \mu(1+t)/2$ (the choice here)?

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps IV

Proof.

So far we have:

$$f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \le \frac{B^2 \gamma_t}{2} + \frac{(\gamma_t^{-1} - \mu)}{2} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \frac{\gamma_t^{-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2.$$

Plug in $\gamma_t^{-1} = \mu(1+t)/2$ and multiply with t on both sides:

$$\begin{aligned} t \cdot \left(f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \right) &\leq \frac{B^2 t}{\mu(t+1)} + \frac{\mu}{4} \left(t(t-1) \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - (t+1)t \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right) \\ &\leq \frac{B^2}{\mu} + \frac{\mu}{4} \left(t(t-1) \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - (t+1)t \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right). \end{aligned}$$

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps V

Proof.

We have

$$\begin{aligned} t \cdot \left(f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) \right) &\leq \frac{B^{2}t}{\mu(t+1)} + \frac{\mu}{4} \left(t(t-1) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - (t+1)t \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \right) \\ &\leq \frac{B^{2}}{\mu} + \frac{\mu}{4} \left(t(t-1) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - (t+1)t \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \right). \end{aligned}$$

Now we get telescoping...

$$\sum_{t=1}^{T} t \cdot \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{TB^2}{\mu} + \frac{\mu}{4} \left(0 - T(T+1) \|\mathbf{x}_{T+1} - \mathbf{x}^*\|^2 \right) \le \frac{TB^2}{\mu}.$$

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps VI $_{\rm Proof.}$

Almost done:

$$\sum_{t=1}^{T} t \cdot \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{TB^2}{\mu} + \frac{\mu}{4} \left(0 - T(T+1) \|\mathbf{x}_{T+1} - \mathbf{x}^*\|^2 \right) \le \frac{TB^2}{\mu}.$$

Since

$$\frac{2}{T(T+1)}\sum_{t=1}^{T}t=1,$$

Jensen's inequality yields

$$f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T}t\cdot\mathbf{x}_{t}\right) - f(\mathbf{x}^{\star}) \leq \frac{2}{T(T+1)}\sum_{t=1}^{T}t\cdot\left(f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star})\right).$$

EPFL Machine Learning and Optimization Laboratory

Tame strong convexity: Discussion

$$f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T}t\cdot\mathbf{x}_{t}\right) - f(\mathbf{x}^{\star}) \leq \frac{2B^{2}}{\mu(T+1)},$$

Weighted average of iterates achieves the bound (later iterates have more weight) Bound is independent of initial distance $\|\mathbf{x}_0 - \mathbf{x}^*\|$...

... but not really: *B* typically depends on $\|\mathbf{x}_0 - \mathbf{x}^*\|$ (for example, $B = \mathcal{O}(\|\mathbf{x}_0 - \mathbf{x}^*\|)$ for quadratic functions)

Recall: we can only hope that B is small (can be checked while running the algorithm)

What if we don't know the parameter μ of strong convexity?

 \rightarrow Bad luck! In practice, try some μ 's, pick best solution obtained

Chapter 5

Stochastic Gradient Descent

Stochastic gradient descent

Many objective functions are sum structured:

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}).$$

Example: f_i is the cost function of the *i*-th observation, taken from a training set of n observation.

Evaluating $\nabla f(\mathbf{x})$ of a sum-structured function is expensive (sum of n gradients).

Stochastic gradient descent: the algorithm

choose $\mathbf{x}_0 \in \mathbb{R}^d$.

sample $i \in [n]$ uniformly at random $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \nabla f_i(\mathbf{x}_t).$

for times $t = 0, 1, \ldots$, and stepsizes $\gamma_t \ge 0$.

Only update with the gradient of f_i instead of the full gradient!

Iteration is n times cheaper than in full gradient descent.

The vector $\mathbf{g}_t := \nabla f_i(\mathbf{x}_t)$ is called a stochastic gradient.

 \mathbf{g}_t is a vector of d random variables, but we will also simply call this a random variable.

Unbiasedness

Can't use convexity

$$f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \le \mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})$$

on top of the vanilla analysis, as this may hold or not hold, depending on how the stochastic gradient g_t turns out.

We will show (and exploit): the inequality holds in expectation.

Fot this, we use that by definition, \mathbf{g}_t is an **unbiased estimate** of $\nabla f(\mathbf{x}_t)$:

$$\mathbb{E}\big[\mathbf{g}_t\big|\mathbf{x}_t = \mathbf{x}\big] = \frac{1}{n}\sum_{i=1}^n \nabla f_i(\mathbf{x}) = \nabla f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d.$$

The inequality $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ holds in expectation For any fixed \mathbf{x} , linearity of conditional expectations (Exercise 32) yields

$$\mathbb{E}[\mathbf{g}_t^{\top}(\mathbf{x} - \mathbf{x}^{\star}) | \mathbf{x}_t = \mathbf{x}] = \mathbb{E}[\mathbf{g}_t | \mathbf{x}_t = \mathbf{x}]^{\top}(\mathbf{x} - \mathbf{x}^{\star}) = \nabla f(\mathbf{x})^{\top}(\mathbf{x} - \mathbf{x}^{\star}).$$

Event $\{\mathbf{x}_t = \mathbf{x}\}\$ can occur only for \mathbf{x} in some finite set X (\mathbf{x}_t is determined by the choices of indices in all iterations so far). Partition Theorem (Exercise 32):

$$\mathbb{E} \begin{bmatrix} \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*) \end{bmatrix} = \sum_{\mathbf{x} \in X} \mathbb{E} \begin{bmatrix} \mathbf{g}_t^\top (\mathbf{x} - \mathbf{x}^*) | \mathbf{x}_t = \mathbf{x} \end{bmatrix} \operatorname{prob}(\mathbf{x}_t = \mathbf{x})$$
$$= \sum_{\mathbf{x} \in X} \nabla f(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^*) \operatorname{prob}(\mathbf{x}_t = \mathbf{x}) = \mathbb{E} \begin{bmatrix} \nabla f(\mathbf{x}_t)^\top (\mathbf{x}_t - \mathbf{x}^*) \end{bmatrix}.$$

Hence,

 \downarrow convexity

$$\mathbb{E}\big[\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\big] = \mathbb{E}\big[\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\big] \ge \mathbb{E}\big[f(\mathbf{x}_t) - f(\mathbf{x}^{\star})\big].$$

Bounded stochastic gradients: $\mathcal{O}(1/\varepsilon^2)$ steps

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable, \mathbf{x}^* a global minimum; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \le R$, and that $\mathbb{E}[\|\mathbf{g}_t\|^2] \le B^2$ for all t. Choosing the constant stepsize

$$\gamma := \frac{R}{B\sqrt{T}}$$

stochastic gradient descent yields

$$\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}\big[f(\mathbf{x}_t)\big] - f(\mathbf{x}^{\star}) \le \frac{RB}{\sqrt{T}}.$$

Same procedure as every week... except

- we assume bounded stochastic gradients in expectation;
- error bound holds in expectation.

Bounded stochastic gradients: $\mathcal{O}(1/\varepsilon^2)$ steps II Proof.

Vanilla analysis (this time, g_t is the stochastic gradient):

$$\sum_{t=0}^{T-1} \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^\star) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^\star\|^2.$$

Taking expectations and using "convexity in expectation":

$$\begin{split} \sum_{t=0}^{T-1} \mathbb{E} \big[f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \big] &\leq \sum_{t=0}^{T-1} \mathbb{E} \big[\mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^{\star}) \big] &\leq \frac{\gamma}{2} \sum_{t=0}^{T-1} \mathbb{E} \big[\|\mathbf{g}_t\|^2 \big] + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2 \\ &\leq \frac{\gamma}{2} B^2 T + \frac{1}{2\gamma} R^2. \end{split}$$

Result follows as every week (optimize γ) . . .

Convergence rate comparison: SGD vs GD

Classic GD: For vanilla analysis, we assumed that $\|\nabla f(\mathbf{x})\|^2 \leq B_{\text{GD}}^2$ for all $\mathbf{x} \in \mathbb{R}^d$, where B_{GD} was a constant. So for sum-objective:

$$\left\|rac{1}{n}\sum_i
abla f_i(\mathbf{x})
ight\|^2 \le B^2_{\mathsf{GD}} \qquad orall \mathbf{x}$$

SGD: Assuming same for the expected squared norms of our stochastic gradients, now called B^2_{SGD} .

$$\frac{1}{n} \sum_{i} \left\| \nabla f_i(\mathbf{x}) \right\|^2 \le B_{\mathsf{SGD}}^2 \qquad \forall \mathbf{x}$$

So by Jensen's inequality for $\|.\|^2$

$$\bullet \ B_{\mathsf{GD}}^2 \approx \left\| \frac{1}{n} \sum_i \nabla f_i(\mathbf{x}) \right\|^2 \le \frac{1}{n} \sum_i \left\| \nabla f_i(\mathbf{x}) \right\|^2 \approx B_{\mathsf{SGD}}^2$$

 B²_{GD} can be smaller than B²_{SGD}, but often comparable. Very similar if larger mini-batches are used.