forked from VikParuchuri/texify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathocr_app.py
165 lines (125 loc) · 5.12 KB
/
ocr_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import io
import pandas as pd
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import hashlib
import pypdfium2
from texify.inference import batch_inference
from texify.model.model import load_model
from texify.model.processor import load_processor
from texify.output import replace_katex_invalid
from PIL import Image
MAX_WIDTH = 800
MAX_HEIGHT = 1000
@st.cache_resource()
def load_model_cached():
return load_model()
@st.cache_resource()
def load_processor_cached():
return load_processor()
@st.cache_data()
def infer_image(pil_image, bbox, temperature):
input_img = pil_image.crop(bbox)
model_output = batch_inference([input_img], model, processor, temperature=temperature)
return model_output[0]
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=96):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def get_uploaded_image(in_file):
return Image.open(in_file).convert("RGB")
def resize_image(pil_image):
if pil_image is None:
return
pil_image.thumbnail((MAX_WIDTH, MAX_HEIGHT), Image.Resampling.LANCZOS)
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
def get_canvas_hash(pil_image):
return hashlib.md5(pil_image.tobytes()).hexdigest()
@st.cache_data()
def get_image_size(pil_image):
if pil_image is None:
return MAX_HEIGHT, MAX_WIDTH
height, width = pil_image.height, pil_image.width
return height, width
st.set_page_config(layout="wide")
top_message = """### Texify
After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right.
If you have already cropped your image, select "OCR image" in the sidebar instead.
"""
st.markdown(top_message)
col1, col2 = st.columns([.7, .3])
model = load_model_cached()
processor = load_processor_cached()
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = get_uploaded_image(in_file)
whole_image = st.sidebar.button("OCR image")
# Resize to max bounds
resize_image(pil_image)
temperature = st.sidebar.slider("Generation temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05)
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas"
with col1:
# Create a canvas component
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.1)", # Fixed fill color with some opacity
stroke_width=1,
stroke_color="#FFAA00",
background_color="#FFF",
background_image=pil_image,
update_streamlit=True,
height=get_image_size(pil_image)[0],
width=get_image_size(pil_image)[1],
drawing_mode="rect",
point_display_radius=0,
key=canvas_hash,
)
if canvas_result.json_data is not None or whole_image:
objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
bbox_list = None
if objects.shape[0] > 0:
boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]]
boxes["right"] = boxes["left"] + boxes["width"]
boxes["bottom"] = boxes["top"] + boxes["height"]
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist()
if whole_image:
bbox_list = [(0, 0, pil_image.width, pil_image.height)]
if bbox_list:
with col2:
inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list]
for idx, inference in enumerate(reversed(inferences)):
st.markdown(f"### {len(inferences) - idx}")
katex_markdown = replace_katex_invalid(inference)
st.markdown(katex_markdown)
st.code(inference)
st.divider()
with col2:
tips = """
### Usage tips
- Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info.
- Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple.
- You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is.
- Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere.
"""
st.markdown(tips)