A systematic course about knowledge graph for graduate students, interested researchers and engineers.
东南大学《知识图谱》研究生课程
时间:2019年春季(2月下旬~5月中旬)
每周五下午2:00~4:30
地点:东南大学九龙湖校区, 纪忠楼Y205
1.1 知识图谱起源和发展
1.2 知识图谱 VS 深度学习
1.3 知识图谱 VS 关系数据库 VS 传统专家库
1.4 知识图谱本质和核心价值
1.5 知识图谱技术体系
1.6 典型知识图谱
1.7 知识图谱应用场景
课件下载:partA partB partC
2.1 知识表示概念
2.2 知识表示方法
- 语义网络
- 产生式系统
- 框架系统
- 概念图
- 形式化概念分析
- 描述逻辑
- 本体
- 本体语言
- 统计表示学习
课件下载:partA
3.1 本体
3.2 知识建模方法
- 本体工程
- 本体学习
- 知识建模工具
- 知识建模实践
课件下载:partA
4.1 知识抽取场景
4.2 知识抽取挑战
4.3 面向结构化数据的知识抽取
4.4 面向半结构化数据的知识抽取
4.5 面向非机构化数据的知识抽取
课件下载:partA
5.1 数据采集原理和技术
- 爬虫原理
- 请求和响应
- 多线程并行爬取
- 反爬机制应对
5.2 数据采集实践
- 百科 论坛 社交网络等爬取实践
课件下载:partA
6.1 实体识别基本概念
6.2 基于规则和词典的实体识别方法
6.3 基于机器学习的实体识别方法
6.4 基于深度学习的实体识别方法
6.5 基于半监督学习的实体识别方法
6.6 基于迁移学习的实体识别方法
6.7 基于预训练的实体识别方法
课件下载:partA
8.1 事件抽取基本概念
8.2 基于规则和模板的方法
8.3 基于机器学习的方法
8.4 基于深度学习的方法
8.5 基于知识库的方法
8.6 基于强化学习的方法
课件下载:partA
- Dong X, Gabrilovich E, Heitz G, et al. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. KDD2014: 601-610.
- Suchanek F M, Kasneci G, Weikum G. Yago: a core of semantic knowledge. WWW2007: 697-706.
- Hoffart J, Suchanek F M, Berberich K, et al. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence, 2013, 194: 28-61.
- Navigli R, Ponzetto S P. BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial Intelligence, 2012, 193: 217-250.
- Auer S, Bizer C, Kobilarov G, et al. Dbpedia: A nucleus for a web of open data. ISWC2007: 722-735.
- Mitchell T, Cohen W, Hruschka E, et al. Never-ending learning. Communications of the ACM, 2018, 61(5): 103-115. earlier work
- Sowa J F. Knowledge representation: logical, philosophical, and computational foundations. 1999.
- Noy N F, McGuinness D L. Ontology Development 101: A Guide to Creating Your First Ontology. another version
- 信息抽取
- Etzioni O, Cafarella M, Downey D, et al. Web-scale information extraction in knowitall:(preliminary results).WWW2004: 100-110.
- Banko M, Cafarella M J, Soderland S, et al. Open information extraction from the web. IJCAI2007, 7: 2670-2676.
- Sarawagi S. Information extraction. Foundations and Trends® in Databases, 2008, 1(3): 261-377.
- Fader A, Soderland S, Etzioni O. Identifying relations for open information extraction. EMNLP2011: 1535-1545.
- Fan J, Kalyanpur A, Gondek D C, et al. Automatic knowledge extraction from documents. IBM Journal of Research and Development, 2012, 56(3.4): 5: 1-5: 10.
- Hearst M A. Automatic acquisition of hyponyms from large text corpora. ACL1992: 539-545.
- 实体识别
- Nadeau D, Sekine S. A survey of named entity recognition and classification. Lingvisticae Investigationes, 2007, 30(1): 3-26.
- Lample G, Ballesteros M, Subramanian S, et al. Neural architectures for named entity recognition. NAACL-HLT 2016.
- Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991, 2015.
- Alhelbawy A, Gaizauskas R. Graph ranking for collective named entity disambiguation. ACL2014, 2: 75-80.
- Florian R, Ittycheriah A, Jing H, et al. Named entity recognition through classifier combination. HLT-NAACL2003: 168-171.
- Chiu J P C, Nichols E. Named entity recognition with bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370.
- Nothman J, Ringland N, Radford W, et al. Learning multilingual named entity recognition from Wikipedia. Artificial Intelligence, 2013, 194: 151-175.
- Santos C N, Guimaraes V. Boosting named entity recognition with neural character embeddings. Proceedings of NEWS 2015 The Fifth Named Entities Workshop, 2015.
- Chiticariu L, Krishnamurthy R, Li Y, et al. Domain adaptation of rule-based annotators for named-entity recognition tasks. EMNLP2010: 1002-1012.
- Shaalan K. A survey of arabic named entity recognition and classification. Computational Linguistics, 2014, 40(2): 469-510.
- Speck R, Ngomo A C N. Ensemble learning for named entity recognition. ISWC2014:519-534.
- Habibi M, Weber L, Neves M, et al. Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics, 2017, 33(14): i37-i48.
- 关系抽取
- Wang C, Kalyanpur A, Fan J, et al. Relation extraction and scoring in DeepQA. IBM Journal of Research and Development, 2012, 56(3.4): 9: 1-9: 12.
- 事件抽取
- Chen Y, Xu L, Liu K, et al. Event extraction via dynamic multi-pooling convolutional neural networks. ACL2015, 1: 167-176.
- Nguyen T H, Grishman R. Event detection and domain adaptation with convolutional neural networks. ACL2015, 2: 365-371.
- Hogenboom F, Frasincar F, Kaymak U, et al. An overview of event extraction from text. DeRiVE2011.
- Narasimhan K, Yala A, Barzilay R. Improving information extraction by acquiring external evidence with reinforcement learning. EMNLP2016.
- Nguyen T H, Cho K, Grishman R. Joint event extraction via recurrent neural networks. NAACL2016: 300-309.
- Shvaiko P, Euzenat J. Ontology matching: state of the art and future challenges. IEEE Transactions on knowledge and data engineering, 2013, 25(1): 158-176.
- Noy N F, Musen M A. Algorithm and tool for automated ontology merging and alignment. AAAI2000.
- Do H H, Rahm E. COMA: a system for flexible combination of schema matching approaches.VLDB2002: 610-621.
- Doan A H, Madhavan J, Domingos P, et al. Learning to map between ontologies on the semantic web. WWW2002: 662-673.
- Ehrig M, Staab S. QOM–quick ontology mapping. ISWC2004: 683-697.
- Qu Y, Hu W, Cheng G. Constructing virtual documents for ontology matching. WWW2006: 23-31.
- Li J, Tang J, Li Y, et al. RiMOM: A dynamic multistrategy ontology alignment framework. IEEE Transactions on Knowledge and data Engineering, 2009, 21(8): 1218-1232.
- Mao M, Peng Y, Spring M. An adaptive ontology mapping approach with neural network based constraint satisfaction. Journal of Web Semantics, 2010, 8(1): 14-25.
- Hu W, Qu Y, Cheng G. Matching large ontologies: A divide-and-conquer approach. Data & Knowledge Engineering, 2008, 67(1): 140-160.
- Papadakis G, Ioannou E, Palpanas T, et al. A blocking framework for entity resolution in highly heterogeneous information spaces. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(12): 2665-2682.
- Wang P, Zhou Y, Xu B. Matching large ontologies based on reduction anchors. Twenty-Second International Joint Conference on Artificial Intelligence. 2011.
- Niu X, Rong S, Wang H, et al. An effective rule miner for instance matching in a web of data. CIKM2012: 1085-1094.
- Papadakis G, Ioannou E, Palpanas T, et al. A blocking framework for entity resolution in highly heterogeneous information spaces. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(12): 2665-2682.
- Li J, Wang Z, Zhang X, et al. Large scale instance matching via multiple indexes and candidate selection. Knowledge-Based Systems, 2013, 50: 112-120.
- Hu W, Chen J, Qu Y. A self-training approach for resolving object coreference on the semantic web. WWW2011: 87-96.
- Tang J, Fong A C M, Wang B, et al. A unified probabilistic framework for name disambiguation in digital library. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(6): 975-987.
- Zhang Y, Zhang F, Yao P, et al. Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop. KDD2018: 1002-1011.
- Ngomo A C N, Auer S. LIMES—a time-efficient approach for large-scale link discovery on the web of data. IJCAI2011.
- Wang Q, Mao Z, Wang B, et al. Knowledge graph embedding: A survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
- Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data. NIPS2013: 2787-2795.
- Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. NIPS2013: 3111-3119.
- Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion. AAAI2015.
- Wang Z, Zhang J, Feng J, et al. Knowledge graph embedding by translating on hyperplanes. AAAI2014.
- Wang Z, Zhang J, Feng J, et al. Knowledge graph and text jointly embedding. EMNLP2014: 1591-1601.
- Ji G, He S, Xu L, et al. Knowledge graph embedding via dynamic mapping matrix. ACL2015: 687-696.
- Nickel M, Tresp V, Kriegel H P. A Three-Way Model for Collective Learning on Multi-Relational Data. ICML2011: 809-816.
- Socher R, Chen D, Manning C D, et al. Reasoning with neural tensor networks for knowledge base completion. NIPS2013: 926-934.
- Lao N, Cohen W W. Relational retrieval using a combination of path-constrained random walks. Machine learning, 2010, 81(1): 53-67.
- Lin Y, Liu Z, Luan H, et al. Modeling relation paths for representation learning of knowledge bases. EMNLP2015.
- Gardner M, Talukdar P, Krishnamurthy J, et al. Incorporating vector space similarity in random walk inference over knowledge bases. EMNLP2014: 397-406.
- Xiong W, Hoang T, Wang W Y. DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning. EMNLP2017:564-573.
- Bornea M A, Dolby J, Kementsietsidis A, et al. Building an efficient RDF store over a relational database. SIGMOD2013: 121-132.
- Huang J, Abadi D J, Ren K. Scalable SPARQL querying of large RDF graphs. Proceedings of the VLDB Endowment, 2011, 4(11): 1123-1134.
- Zou L, Özsu M T, Chen L, et al. gStore: a graph-based SPARQL query engine. The VLDB Journal—The International Journal on Very Large Data Bases, 2014, 23(4): 565-590.
- Ferrucci D A. Introduction to “this is watson”. IBM Journal of Research and Development, 2012, 56(3.4): 1: 1-1: 15.
- Lally A, Prager J M, McCord M C, et al. Question analysis: How Watson reads a clue. IBM Journal of Research and Development, 2012, 56(3.4): 2: 1-2: 14.
- Zhou H, Young T, Huang M, et al. Commonsense Knowledge Aware Conversation Generation with Graph Attention. IJCAI. 2018: 4623-4629.
- Zhu Y, Zhang C, Ré C, et al. Building a large-scale multimodal knowledge base system for answering visual queries. arXiv:1507.05670, 2015.
- Auli M, Galley M, Quirk C, et al. Joint language and translation modeling with recurrent neural networks. EMNLP2013:1044–1054.
- Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.
- Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP2014.
- Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
- Graves A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
- Bhatia S, Dwivedi P, Kaur A. That’s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships. ISWC2018: 250-267. (Best Paper)
- Soulet A, Giacometti A, Markhoff B, et al. Representativeness of Knowledge Bases with the Generalized Benford’s Law. ISWC2018: 374-390.
- Wang M, Wang R, Liu J, et al. Towards Empty Answers in SPARQL: Approximating Querying with RDF Embedding. ISWC2018: 513-529.
- Salas J, Hogan A. Canonicalisation of monotone SPARQL queries. ISWC2018: 600-616. (Best Student Paper)
- Pertsas V, Constantopoulos P, Androutsopoulos I. Ontology Driven Extraction of Research Processes. ISWC2018:162-178.
- Saeedi A, Peukert E, Rahm E. Using link features for entity clustering in knowledge graphs. ESWC2018: 576-592. (Best Paper)
- Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling relational data with graph convolutional networks. ESWC2018: 593-607. (Best Student Paper)
- Hamid Z, Giulio N, Jens L. Formal Query Generation for Question Answering over Knowledge Bases. ESWC2018:714-728.
- Zhou L, Gao J, Li D, et al. The Design and Implementation of XiaoIce, an Empathetic Social Chatbot. arXiv preprint arXiv:1812.08989, 2018.
- Dasgupta S S, Ray S N, Talukdar P. HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. EMNLP2018: 2001-2011.
- Dubey M, Banerjee D, Chaudhuri D, et al. EARL: Joint entity and relation linking for question answering over knowledge graphsISWC2018: 108-126.
- Chen M, Tian Y, Chang K W, et al. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. IJCAI2018.
- Janke D, Staab S, Thimm M. Impact analysis of data placement strategies on query efforts in distributed rdf stores. Journal of Web Semantics, 2018, 50: 21-48.
- Han X, Zhu H, Yu P, et al. FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation. EMNLP2018.
- Hou Y, Liu Y, Che W, et al. Sequence-to-Sequence Data Augmentation for Dialogue Language Understanding. ACL2018: 1234-1245.
- Tran V K, Nguyen L M. Adversarial Domain Adaptation for Variational Neural Language Generation in Dialogue Systems. COLING2018: 1205-1217.
- Zhang W, Cui Y, Wang Y, et al. Context-Sensitive Generation of Open-Domain Conversational Responses. COLING2018: 2437-2447.
- Shi W, Yu Z. Sentiment Adaptive End-to-End Dialog Systems. ACL2018, 1: 1509-1519.
- Zhang S, Dinan E, Urbanek J, et al. Personalizing Dialogue Agents: I have a dog, do you have pets too? ACL2018, 1: 2204-2213.
- Wei Z, Liu Q, Peng B, et al. Task-oriented dialogue system for automatic diagnosis. ACL2018, 2: 201-207.
- Sungjoon Park, Donghyun Kim and Alice Oh. Conversation Model Fine-Tuning for Classifying Client Utterances in Counseling Dialogues. NAACL2019.