-
Notifications
You must be signed in to change notification settings - Fork 7
/
run.py
263 lines (223 loc) · 9.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import random
import time
import numpy as np
import cv2
from keras.applications.imagenet_utils import preprocess_input
from keras.engine.saving import load_model
from keras.preprocessing.image import img_to_array
from mtcnn import MTCNN
from math import *
detector = MTCNN()
# cap = cv2.VideoCapture(0)
def get_MER(x1,x2,y1,y2,img):
cropped = img[y1:y2, x1:x2] # 裁剪坐标为[y0:y1, x0:x1]
return cropped
modelpath='./model/best0428ep150.h5'
model_cnn=load_model(modelpath, compile=False)
classname=["closed_eye","closed_mouth","open_eye","open_mouth","smoke"]
def get_label(img):
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = cv2.resize(img, (32, 32))
img = img.astype("float") / 255.0
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
preds = model_cnn.predict(img)
i = preds.argmax(axis=1)[0]
label = classname[i]
return label
# img_count=0
left_eye_count=0
right_eye_count=0
mouth_count=0
frag=False
blink=0
path='./20200407_173126.mp4'
cap = cv2.VideoCapture(path)
start = time.time()
while True:
start = time.time()
red,image=cap.read()
Img=image.copy()
# image = cv2.resize(image, (480, 360))
result = detector.detect_faces(image)
if(len(result))>0:
# Result is an array with all the bounding boxes detected. We know that for 'ivan.jpg' there is only one.
# print(len(result[0]['box']))
bounding_box = result[0]['box']
keypoints = result[0]['keypoints']
#
# print(face)
left_eye=keypoints['left_eye']
right_eye=keypoints['right_eye']
nose=keypoints['nose']
mouth_left=keypoints['mouth_left']
mouth_right=keypoints['mouth_right']
arc = atan(abs(right_eye[1] - left_eye[1]) / abs(right_eye[0] - left_eye[0]))
W = abs(right_eye[0] - left_eye[0]) / (2 * cos(arc))
H = W / 2
###########可去掉,只是避免裁剪出问题而已
x1 = int(left_eye[0] - W / 2)
if(x1<=0):
x1=1
x2 = int(left_eye[0] + W / 2)
if(x2>=639):
x2=638
y1 = int(left_eye[1] - H / 2)-5
if (y1<=0):
y1=1
y2 = int(left_eye[1] + H / 2)
if(y2>=479):
y2=478
left=get_MER(x1, x2, y1, y2, image)
label_left_eye = get_label(left)
if label_left_eye=='closed_eye':
left_state='closed'
else:
left_state='open'
print(label_left_eye)
cv2.putText(image, "{}".format(left_state), (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 255, 0),
1, 8)
cv2.putText(image, "left_eye_state:{}".format(left_state), (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1, 8)
#cv2.imshow("left_eye", left)
##########裁剪左眼图像,可以扩充数据集
# if len(left)>0:
# cv2.imwrite(savePath1 + str(Img), left)
# cv2.imwrite(savePath1 + str(Img), cv2.cvtColor(get_MER(x1, x2, y1, y2, image), cv2.COLOR_BGR2GRAY))
# 右眼
rx1 = int(right_eye[0] - W / 2)
if (rx1 <= 0):
rx1 = 1
rx2 = int(right_eye[0] + W / 2)
if(rx2>=639):
rx2=638
ry1 = int(right_eye[1] - H / 2)-5
if (ry1 <= 0):
ry1 = 1
ry2 = int(right_eye[1] + H / 2)
if (ry2 >= 479):
ry1 = 478
right=get_MER(rx1, rx2, ry1, ry2, image)
label_right_eye=get_label(right)
if label_right_eye == 'closed_eye':
right_state='close'
blink = blink+1
else:
right_state='open'
right_eye_count = right_eye_count + 1
print(label_right_eye)
cv2.putText(image, "{}".format(right_state), (rx1, ry1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 0), 1,
8)
cv2.putText(image, "right_eye:{}".format(right_state), (5, 35), cv2.FONT_HERSHEY_SIMPLEX,0.7, (255, 255, 0), 1, 8)
# cv2.imshow("right_eye",right)
# if len(right)>0:
cv2.rectangle(image, (rx1, ry1), (rx2, ry2), (255, 0, 0), 2)
# cv2.imwrite(savePath2 + str(Img), cv2.cvtColor(get_MER(rx1, rx2, ry1, ry2, image), cv2.COLOR_BGR2GRAY))
D=(mouth_left[1]-nose[1])/cos(arc)-(mouth_left[1]-mouth_right[1])/(2*cos(arc))
m1=nose[1]+D/2+10
m2=nose[1]+3*D/2+20
xm1=int(mouth_left[0])
xm2=int(mouth_right[0])+10
if(m2>=479):
m2=478
if(xm1<=1):
xm1=2
if(xm2>=639):
xm2=638
mouth=get_MER(int(mouth_left[0]), int(mouth_right[0]), int(m1), int(m2), image)
mouth_label = get_label(mouth)
if mouth_label=='open_mouth':
mouth_count=mouth_count+1
mouth_state='open_mouth'
elif mouth_label=='closed_mouth':
mouth_state='closed'
mouth_count=0
frag = False
else:
mouth_state='Eat or Smoke'
if mouth_count>=10:
mouth_count=0
mouth_state = 'Yawd'
frag=True
# cv2.imshow("mouth", mouth)
# if frag:
# cv2.putText(image, "State:Yawd", (5, 105),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 160, 100), 2, 8)
# 耳部,(上面那个模型没有训练打电话这个类别,单独训练了一个耳朵和打电话的二分类模型)
# left_ear
#lex1 = x1 - 3 * W
#if int(lex1)<=10:
# lex1=10
#lex2 = bounding_box[0]
#ley1 = y1
#ley2 = bounding_box[1] + bounding_box[3]
#left_ear=get_MER(int(lex1),int(lex2),int(ley1),int(ley2),image)
#left_ear_label=get_call_label(left_ear)
#print(left_ear_label)
# cv2.imwrite(savePath2 + 'lear'+str(img_count)+'.jpg', left_ear)
# print(left_ear_label)
# if left_ear_label=='calling':
# ear_state='Calling'
# mouth_state='Talking'
# cv2.putText(image, "other_state:{}".format(ear_state), (5, 75),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 100, 255), 1, 8)
# cv2.imshow("left_ear", left_ear)
# right_ear
#rex2 =rx2 + 3 * W
#if int(rex2)>=479:
# rex2=478
#if int(rex2) <= rex1:
# rex2 = rex1+30
#rey1 = y1
#right_ear = get_MER(int(rex1), int(rex2), int(rey1), int(rey2), image)
# cv2.imwrite(savePath2 + 'rear' + str(i)+'.jpg', right_ear)
# i=i+1
#right_ear_label = get_call_label(right_ear)
# print(right_ear_label)
# if right_ear_label=='calling':
# ear_state='Calling'
# mouth_state='Talking'
# cv2.putText(image, "other_state:{}".format(ear_state), (5, 75),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 100, 255), 1, 8)
# cv2.imshow("right_ear", right_ear)
# 嘴部状态显示
cv2.putText(image, "mouth_state:{}".format(mouth_state), (int(mouth_left[0]) - 20, int(m1) - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (100, 255, 255), 1, 8)
cv2.putText(image, "mouth_state:{}".format(mouth_state), (5, 55),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 1, 8)
cv2.rectangle(image,
(bounding_box[0], bounding_box[1]),
(bounding_box[0] + bounding_box[2], bounding_box[1] + bounding_box[3]),
(0, 155, 255),
2)
cv2.rectangle(image, (int(mouth_left[0]), int(m1)), (int(mouth_right[0]), int(m2)), (0, 0, 255), 1)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 1)
cv2.rectangle(image, (rx1, ry1), (rx2, ry2), (0, 255, 0), 1)
cv2.rectangle(image, (int(lex1), int(ley1)), (int(lex2), int(ley2)), (0, 255, 0), 1)
cv2.rectangle(image, (int(rex1), int(rey1)), (int(rex2), int(rey2)), (0, 255, 0), 1)
# print(mouth_label)
# gray = cv2.cvtColor(mouth, cv2.COLOR_BGR2GRAY)
image=cv2.resize(image,(640,480))
# cv2.imwrite(savepath + str(i)+'.jpg', gray)
# i+=1
T = time.time() - start
fps = 1 / T # 实时在视频上显示fps
#
fps_txt = 'fps:%.2f' % (fps)
cv2.putText(image, fps_txt, (0,180), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 255), 1, 8)
cv2.imshow("image",image)
if cv2.waitKey(1)==27:
cv2.destroyAllWindows()
# print(time.time() - start)
# print("FPS")
# print(len(imagelist) / (time.time()-start))
# print("测试图片数量:{}".format(img_count))
# print("闭嘴图片预测数量{}".format(mouth_count))
# mv=mouth_count/img_count
# print("闭嘴图片测试准确率{}".format(mv))
# print("左眼闭合预测数量{}".format(left_eye_count))
# print("右眼闭合的数量{}".format(right_eye_count))
# lv=left_eye_count/img_count
# print("左眼测试准确率{}".format(lv))
# rv=right_eye_count/img_count
# print("右眼测试准确率{}".format(rv))