forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_memory_dump.cc
550 lines (476 loc) · 20 KB
/
process_memory_dump.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/trace_event/process_memory_dump.h"
#include <errno.h>
#include <memory>
#include <vector>
#include "base/logging.h"
#include "base/memory/page_size.h"
#include "base/memory/ptr_util.h"
#include "base/memory/shared_memory_tracker.h"
#include "base/process/process_metrics.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/memory_infra_background_allowlist.h"
#include "base/trace_event/trace_event_impl.h"
#include "base/trace_event/traced_value.h"
#include "base/unguessable_token.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/perfetto/protos/perfetto/trace/memory_graph.pbzero.h"
#include "third_party/perfetto/protos/perfetto/trace/trace_packet.pbzero.h"
#if defined(OS_IOS)
#include <mach/vm_page_size.h>
#endif
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
#include <sys/mman.h>
#endif
#if defined(OS_WIN)
#include <windows.h> // Must be in front of other Windows header files
#include <Psapi.h>
#endif
using ProcessSnapshot =
::perfetto::protos::pbzero::MemoryTrackerSnapshot_ProcessSnapshot;
namespace base {
namespace trace_event {
namespace {
const char kEdgeTypeOwnership[] = "ownership";
std::string GetSharedGlobalAllocatorDumpName(
const MemoryAllocatorDumpGuid& guid) {
return "global/" + guid.ToString();
}
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
size_t GetSystemPageCount(size_t mapped_size, size_t page_size) {
return (mapped_size + page_size - 1) / page_size;
}
#endif
UnguessableToken GetTokenForCurrentProcess() {
static UnguessableToken instance = UnguessableToken::Create();
return instance;
}
} // namespace
// static
bool ProcessMemoryDump::is_black_hole_non_fatal_for_testing_ = false;
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
// static
size_t ProcessMemoryDump::GetSystemPageSize() {
#if defined(OS_IOS)
// On iOS, getpagesize() returns the user page sizes, but for allocating
// arrays for mincore(), kernel page sizes is needed. Use vm_kernel_page_size
// as recommended by Apple, https://forums.developer.apple.com/thread/47532/.
// Refer to http://crbug.com/542671 and Apple rdar://23651782
return vm_kernel_page_size;
#else
return base::GetPageSize();
#endif // defined(OS_IOS)
}
// static
absl::optional<size_t> ProcessMemoryDump::CountResidentBytes(
void* start_address,
size_t mapped_size) {
const size_t page_size = GetSystemPageSize();
const uintptr_t start_pointer = reinterpret_cast<uintptr_t>(start_address);
DCHECK_EQ(0u, start_pointer % page_size);
size_t offset = 0;
size_t total_resident_pages = 0;
bool failure = false;
// An array as large as number of pages in memory segment needs to be passed
// to the query function. To avoid allocating a large array, the given block
// of memory is split into chunks of size |kMaxChunkSize|.
const size_t kMaxChunkSize = 8 * 1024 * 1024;
size_t max_vec_size =
GetSystemPageCount(std::min(mapped_size, kMaxChunkSize), page_size);
#if defined(OS_WIN)
std::unique_ptr<PSAPI_WORKING_SET_EX_INFORMATION[]> vec(
new PSAPI_WORKING_SET_EX_INFORMATION[max_vec_size]);
#elif defined(OS_APPLE)
std::unique_ptr<char[]> vec(new char[max_vec_size]);
#elif defined(OS_POSIX) || defined(OS_FUCHSIA)
std::unique_ptr<unsigned char[]> vec(new unsigned char[max_vec_size]);
#endif
while (offset < mapped_size) {
uintptr_t chunk_start = (start_pointer + offset);
const size_t chunk_size = std::min(mapped_size - offset, kMaxChunkSize);
const size_t page_count = GetSystemPageCount(chunk_size, page_size);
size_t resident_page_count = 0;
#if defined(OS_WIN)
for (size_t i = 0; i < page_count; i++) {
vec[i].VirtualAddress =
reinterpret_cast<void*>(chunk_start + i * page_size);
}
DWORD vec_size = static_cast<DWORD>(
page_count * sizeof(PSAPI_WORKING_SET_EX_INFORMATION));
failure = !QueryWorkingSetEx(GetCurrentProcess(), vec.get(), vec_size);
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i].VirtualAttributes.Valid;
#elif defined(OS_FUCHSIA)
// TODO(fuchsia): Port, see https://crbug.com/706592.
ALLOW_UNUSED_LOCAL(chunk_start);
ALLOW_UNUSED_LOCAL(page_count);
#elif defined(OS_APPLE)
// mincore in MAC does not fail with EAGAIN.
failure =
!!mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get());
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i] & MINCORE_INCORE ? 1 : 0;
#elif defined(OS_POSIX)
int error_counter = 0;
int result = 0;
// HANDLE_EINTR tries for 100 times. So following the same pattern.
do {
result =
#if defined(OS_AIX)
mincore(reinterpret_cast<char*>(chunk_start), chunk_size,
reinterpret_cast<char*>(vec.get()));
#else
mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get());
#endif
} while (result == -1 && errno == EAGAIN && error_counter++ < 100);
failure = !!result;
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i] & 1;
#endif
if (failure)
break;
total_resident_pages += resident_page_count * page_size;
offset += kMaxChunkSize;
}
DCHECK(!failure);
if (failure) {
LOG(ERROR) << "CountResidentBytes failed. The resident size is invalid";
return absl::nullopt;
}
return total_resident_pages;
}
// static
absl::optional<size_t> ProcessMemoryDump::CountResidentBytesInSharedMemory(
void* start_address,
size_t mapped_size) {
#if defined(OS_MAC)
// On macOS, use mach_vm_region instead of mincore for performance
// (crbug.com/742042).
mach_vm_size_t dummy_size = 0;
mach_vm_address_t address =
reinterpret_cast<mach_vm_address_t>(start_address);
vm_region_top_info_data_t info;
MachVMRegionResult result =
GetTopInfo(mach_task_self(), &dummy_size, &address, &info);
if (result == MachVMRegionResult::Error) {
LOG(ERROR) << "CountResidentBytesInSharedMemory failed. The resident size "
"is invalid";
return absl::optional<size_t>();
}
size_t resident_pages =
info.private_pages_resident + info.shared_pages_resident;
// On macOS, measurements for private memory footprint overcount by
// faulted pages in anonymous shared memory. To discount for this, we touch
// all the resident pages in anonymous shared memory here, thus making them
// faulted as well. This relies on two assumptions:
//
// 1) Consumers use shared memory from front to back. Thus, if there are
// (N) resident pages, those pages represent the first N * PAGE_SIZE bytes in
// the shared memory region.
//
// 2) This logic is run shortly before the logic that calculates
// phys_footprint, thus ensuring that the discrepancy between faulted and
// resident pages is minimal.
//
// The performance penalty is expected to be small.
//
// * Most of the time, we expect the pages to already be resident and faulted,
// thus incurring a cache penalty read hit [since we read from each resident
// page].
//
// * Rarely, we expect the pages to be resident but not faulted, resulting in
// soft faults + cache penalty.
//
// * If assumption (1) is invalid, this will potentially fault some
// previously non-resident pages, thus increasing memory usage, without fixing
// the accounting.
//
// Sanity check in case the mapped size is less than the total size of the
// region.
size_t pages_to_fault =
std::min(resident_pages, (mapped_size + PAGE_SIZE - 1) / PAGE_SIZE);
volatile char* base_address = static_cast<char*>(start_address);
for (size_t i = 0; i < pages_to_fault; ++i) {
// Reading from a volatile is a visible side-effect for the purposes of
// optimization. This guarantees that the optimizer will not kill this line.
base_address[i * PAGE_SIZE];
}
return resident_pages * PAGE_SIZE;
#else
return CountResidentBytes(start_address, mapped_size);
#endif // defined(OS_MAC)
}
#endif // defined(COUNT_RESIDENT_BYTES_SUPPORTED)
ProcessMemoryDump::ProcessMemoryDump(
const MemoryDumpArgs& dump_args)
: process_token_(GetTokenForCurrentProcess()),
dump_args_(dump_args) {}
ProcessMemoryDump::~ProcessMemoryDump() = default;
ProcessMemoryDump::ProcessMemoryDump(ProcessMemoryDump&& other) = default;
ProcessMemoryDump& ProcessMemoryDump::operator=(ProcessMemoryDump&& other) =
default;
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
const std::string& absolute_name) {
return AddAllocatorDumpInternal(std::make_unique<MemoryAllocatorDump>(
absolute_name, dump_args_.level_of_detail, GetDumpId(absolute_name)));
}
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
const std::string& absolute_name,
const MemoryAllocatorDumpGuid& guid) {
return AddAllocatorDumpInternal(std::make_unique<MemoryAllocatorDump>(
absolute_name, dump_args_.level_of_detail, guid));
}
MemoryAllocatorDump* ProcessMemoryDump::AddAllocatorDumpInternal(
std::unique_ptr<MemoryAllocatorDump> mad) {
// In background mode return the black hole dump, if invalid dump name is
// given.
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND &&
!IsMemoryAllocatorDumpNameInAllowlist(mad->absolute_name())) {
return GetBlackHoleMad(mad->absolute_name());
}
auto insertion_result = allocator_dumps_.insert(
std::make_pair(mad->absolute_name(), std::move(mad)));
MemoryAllocatorDump* inserted_mad = insertion_result.first->second.get();
DCHECK(insertion_result.second) << "Duplicate name: "
<< inserted_mad->absolute_name();
return inserted_mad;
}
MemoryAllocatorDump* ProcessMemoryDump::GetAllocatorDump(
const std::string& absolute_name) const {
auto it = allocator_dumps_.find(absolute_name);
if (it != allocator_dumps_.end())
return it->second.get();
return nullptr;
}
MemoryAllocatorDump* ProcessMemoryDump::GetOrCreateAllocatorDump(
const std::string& absolute_name) {
MemoryAllocatorDump* mad = GetAllocatorDump(absolute_name);
return mad ? mad : CreateAllocatorDump(absolute_name);
}
MemoryAllocatorDump* ProcessMemoryDump::CreateSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) {
// A shared allocator dump can be shared within a process and the guid could
// have been created already.
MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid);
if (mad && mad != black_hole_mad_.get()) {
// The weak flag is cleared because this method should create a non-weak
// dump.
mad->clear_flags(MemoryAllocatorDump::Flags::WEAK);
return mad;
}
return CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid);
}
MemoryAllocatorDump* ProcessMemoryDump::CreateWeakSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) {
MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid);
if (mad && mad != black_hole_mad_.get())
return mad;
mad = CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid);
mad->set_flags(MemoryAllocatorDump::Flags::WEAK);
return mad;
}
MemoryAllocatorDump* ProcessMemoryDump::GetSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) const {
return GetAllocatorDump(GetSharedGlobalAllocatorDumpName(guid));
}
void ProcessMemoryDump::DumpHeapUsage(
const std::unordered_map<base::trace_event::AllocationContext,
base::trace_event::AllocationMetrics>&
metrics_by_context,
base::trace_event::TraceEventMemoryOverhead& overhead,
const char* allocator_name) {
std::string base_name = base::StringPrintf("tracing/heap_profiler_%s",
allocator_name);
overhead.DumpInto(base_name.c_str(), this);
}
void ProcessMemoryDump::SetAllocatorDumpsForSerialization(
std::vector<std::unique_ptr<MemoryAllocatorDump>> dumps) {
DCHECK(allocator_dumps_.empty());
for (std::unique_ptr<MemoryAllocatorDump>& dump : dumps)
AddAllocatorDumpInternal(std::move(dump));
}
std::vector<ProcessMemoryDump::MemoryAllocatorDumpEdge>
ProcessMemoryDump::GetAllEdgesForSerialization() const {
std::vector<MemoryAllocatorDumpEdge> edges;
edges.reserve(allocator_dumps_edges_.size());
for (const auto& it : allocator_dumps_edges_)
edges.push_back(it.second);
return edges;
}
void ProcessMemoryDump::SetAllEdgesForSerialization(
const std::vector<ProcessMemoryDump::MemoryAllocatorDumpEdge>& edges) {
DCHECK(allocator_dumps_edges_.empty());
for (const MemoryAllocatorDumpEdge& edge : edges) {
auto it_and_inserted = allocator_dumps_edges_.emplace(edge.source, edge);
DCHECK(it_and_inserted.second);
}
}
void ProcessMemoryDump::Clear() {
allocator_dumps_.clear();
allocator_dumps_edges_.clear();
}
void ProcessMemoryDump::TakeAllDumpsFrom(ProcessMemoryDump* other) {
// Moves the ownership of all MemoryAllocatorDump(s) contained in |other|
// into this ProcessMemoryDump, checking for duplicates.
for (auto& it : other->allocator_dumps_)
AddAllocatorDumpInternal(std::move(it.second));
other->allocator_dumps_.clear();
// Move all the edges.
allocator_dumps_edges_.insert(other->allocator_dumps_edges_.begin(),
other->allocator_dumps_edges_.end());
other->allocator_dumps_edges_.clear();
}
void ProcessMemoryDump::SerializeAllocatorDumpsInto(TracedValue* value) const {
if (allocator_dumps_.size() > 0) {
value->BeginDictionary("allocators");
for (const auto& allocator_dump_it : allocator_dumps_)
allocator_dump_it.second->AsValueInto(value);
value->EndDictionary();
}
value->BeginArray("allocators_graph");
for (const auto& it : allocator_dumps_edges_) {
const MemoryAllocatorDumpEdge& edge = it.second;
value->BeginDictionary();
value->SetString("source", edge.source.ToString());
value->SetString("target", edge.target.ToString());
value->SetInteger("importance", edge.importance);
value->SetString("type", kEdgeTypeOwnership);
value->EndDictionary();
}
value->EndArray();
}
void ProcessMemoryDump::SerializeAllocatorDumpsInto(
perfetto::protos::pbzero::MemoryTrackerSnapshot* memory_snapshot,
const base::ProcessId pid) const {
ProcessSnapshot* process_snapshot =
memory_snapshot->add_process_memory_dumps();
process_snapshot->set_pid(static_cast<int>(pid));
for (const auto& allocator_dump_it : allocator_dumps_) {
ProcessSnapshot::MemoryNode* memory_node =
process_snapshot->add_allocator_dumps();
allocator_dump_it.second->AsProtoInto(memory_node);
}
for (const auto& it : allocator_dumps_edges_) {
const MemoryAllocatorDumpEdge& edge = it.second;
ProcessSnapshot::MemoryEdge* memory_edge =
process_snapshot->add_memory_edges();
memory_edge->set_source_id(edge.source.ToUint64());
memory_edge->set_target_id(edge.target.ToUint64());
memory_edge->set_importance(edge.importance);
}
}
void ProcessMemoryDump::AddOwnershipEdge(const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target,
int importance) {
// This will either override an existing edge or create a new one.
auto it = allocator_dumps_edges_.find(source);
int max_importance = importance;
if (it != allocator_dumps_edges_.end()) {
DCHECK_EQ(target.ToUint64(), it->second.target.ToUint64());
max_importance = std::max(importance, it->second.importance);
}
allocator_dumps_edges_[source] = {source, target, max_importance,
false /* overridable */};
}
void ProcessMemoryDump::AddOwnershipEdge(
const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target) {
AddOwnershipEdge(source, target, 0 /* importance */);
}
void ProcessMemoryDump::AddOverridableOwnershipEdge(
const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target,
int importance) {
if (allocator_dumps_edges_.count(source) == 0) {
allocator_dumps_edges_[source] = {source, target, importance,
true /* overridable */};
} else {
// An edge between the source and target already exits. So, do nothing here
// since the new overridable edge is implicitly overridden by a strong edge
// which was created earlier.
DCHECK(!allocator_dumps_edges_[source].overridable);
}
}
void ProcessMemoryDump::CreateSharedMemoryOwnershipEdge(
const MemoryAllocatorDumpGuid& client_local_dump_guid,
const UnguessableToken& shared_memory_guid,
int importance) {
CreateSharedMemoryOwnershipEdgeInternal(client_local_dump_guid,
shared_memory_guid, importance,
false /*is_weak*/);
}
void ProcessMemoryDump::CreateWeakSharedMemoryOwnershipEdge(
const MemoryAllocatorDumpGuid& client_local_dump_guid,
const UnguessableToken& shared_memory_guid,
int importance) {
CreateSharedMemoryOwnershipEdgeInternal(
client_local_dump_guid, shared_memory_guid, importance, true /*is_weak*/);
}
void ProcessMemoryDump::CreateSharedMemoryOwnershipEdgeInternal(
const MemoryAllocatorDumpGuid& client_local_dump_guid,
const UnguessableToken& shared_memory_guid,
int importance,
bool is_weak) {
DCHECK(!shared_memory_guid.is_empty());
// New model where the global dumps created by SharedMemoryTracker are used
// for the clients.
// The guid of the local dump created by SharedMemoryTracker for the memory
// segment.
auto local_shm_guid =
GetDumpId(SharedMemoryTracker::GetDumpNameForTracing(shared_memory_guid));
// The dump guid of the global dump created by the tracker for the memory
// segment.
auto global_shm_guid =
SharedMemoryTracker::GetGlobalDumpIdForTracing(shared_memory_guid);
// Create an edge between local dump of the client and the local dump of the
// SharedMemoryTracker. Do not need to create the dumps here since the tracker
// would create them. The importance is also required here for the case of
// single process mode.
AddOwnershipEdge(client_local_dump_guid, local_shm_guid, importance);
// TODO(ssid): Handle the case of weak dumps here. This needs a new function
// GetOrCreaetGlobalDump() in PMD since we need to change the behavior of the
// created global dump.
// Create an edge that overrides the edge created by SharedMemoryTracker.
AddOwnershipEdge(local_shm_guid, global_shm_guid, importance);
}
void ProcessMemoryDump::AddSuballocation(const MemoryAllocatorDumpGuid& source,
const std::string& target_node_name) {
// Do not create new dumps for suballocations in background mode.
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND)
return;
std::string child_mad_name = target_node_name + "/__" + source.ToString();
MemoryAllocatorDump* target_child_mad = CreateAllocatorDump(child_mad_name);
AddOwnershipEdge(source, target_child_mad->guid());
}
MemoryAllocatorDump* ProcessMemoryDump::GetBlackHoleMad(
const std::string& absolute_name) {
DCHECK(is_black_hole_non_fatal_for_testing_)
<< " unknown dump name " << absolute_name
<< " this likely means kAllocatorDumpNameAllowlist needs to be updated";
if (!black_hole_mad_) {
std::string name = "discarded";
black_hole_mad_ = std::make_unique<MemoryAllocatorDump>(
name, dump_args_.level_of_detail, GetDumpId(name));
}
return black_hole_mad_.get();
}
MemoryAllocatorDumpGuid ProcessMemoryDump::GetDumpId(
const std::string& absolute_name) {
return MemoryAllocatorDumpGuid(StringPrintf(
"%s:%s", process_token().ToString().c_str(), absolute_name.c_str()));
}
bool ProcessMemoryDump::MemoryAllocatorDumpEdge::operator==(
const MemoryAllocatorDumpEdge& other) const {
return source == other.source && target == other.target &&
importance == other.importance && overridable == other.overridable;
}
bool ProcessMemoryDump::MemoryAllocatorDumpEdge::operator!=(
const MemoryAllocatorDumpEdge& other) const {
return !(*this == other);
}
} // namespace trace_event
} // namespace base