最近一段时间,
监督学习(如 LSTM)可以根据各种历史数据来预测未来的股票的价格,判断股票是涨还是跌,帮助人做决策。
强化学习是机器学习的另一个分支,在决策的时候采取合适的行动 (Action) 使最后的奖励最大化。与监督学习预测将来的数值不同,强化学习根据输入的状态(如当日开盘价、收盘价等),输出系列动作(例如:买进、持有、卖出)实现自动交易。
假设交易共有买入、卖出和保持 3 种操作,故定义动作(action
)为长度为 2 的数组
action[0]
为操作类型;action[1]
表示买入或卖出百分比;
动作类型 action[0] |
说明 |
---|---|
1 | 买入 action[1] |
2 | 卖出 action[1] |
3 | 保持 |
注意,当动作类型 action[0] = 3
时,表示不买也不抛售股票,此时 action[1]
的值无实际意义,网络在训练过程中,Agent 会慢慢学习到这一信息。
奖励函数的设计,对强化学习的目标至关重要。在股票交易的环境下,最应该关心的就是当前的盈利情况,故用当前的利润作为奖励函数。即当前本金 + 股票价值 - 初始本金 = 利润
。
# profits
reward = self.net_worth - INITIAL_ACCOUNT_BALANCE
reward = 1 if reward > 0 else reward = -100
为了使网络更快学习到盈利的策略,当利润为负值时,给予网络一个较大的惩罚 (-100
)。
股票证券数据集来自于 baostock,一个免费、开源的证券数据平台,提供 Python API。
>> pip install baostock -i https://pypi.tuna.tsinghua.edu.cn/simple/ --trusted-host pypi.tuna.tsinghua.edu.cn
数据获取代码参考 get_stock_data.py
>> python get_stock_data.py
将过去 20 多年的股票数据划分为训练集,和末尾 1 个月数据作为测试集,来验证强化学习策略的有效性。划分如下
1990-01-01 ~ 2019-11-29 |
2019-12-01 ~ 2019-12-31 |
---|---|
训练集 | 测试集 |