-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtest_post_clip.py
455 lines (326 loc) · 19.5 KB
/
test_post_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
import os.path as osp
import logging
from tqdm import tqdm
from sklearn.metrics import accuracy_score, confusion_matrix
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from mpl_toolkits.mplot3d import Axes3D
import torch
from torch.utils.data import Dataset, DataLoader
from utils import helper
from utils import visualization
from utils import experimenter
from train_autoencoder import experiment_name, parsing
from train_post_clip import get_dataloader, experiment_name2, get_condition_embeddings, get_local_parser, get_clip_model
from dataset import shapenet_dataset
from networks import autoencoder, latent_flows
import clip
###################################### Text Queries ###############################################
id_to_label = {'02691156': 0, '02828884': 1, '02933112': 2, '02958343': 3, '03001627': 4, '03211117': 5, '03636649': 6, '03691459': 7, '04090263': 8, '04256520': 9, '04379243': 10, '04401088': 11, '04530566': 12}
label_to_category = {0: 'airplane', 1:'bench', 2:'cabinet', 3:'car', 4:'chair', 5:'monitor', 6:'lamp', 7:'loudspeaker', 8:'gun', 9:'sofa', 10:'table', 11:'phone', 12:'boat'}
id_to_sub_category = {
"02691156": ["airplane", "jet", "fighter plane", "biplane", "seaplane", "space shuttle", "supersonic plane", "rocket plane", "delta wing", "swept wing plane" , "straight wing plane", "propeller plane"],
"02828884": ["bench", "pew", "flat bench", "settle", "back bench", "laboratory bench", "storage bench"],
"02933112": ["cabinet", "garage cabinet", "desk cabinet"] ,
"02958343": ["car", "bus", "shuttle-bus", "pickup car", "truck", "suv", "sports car", "limo", "jeep", "van", "gas guzzler", "race car", "monster truck", "armored", "atv", "microbus", "muscle car", "retro car", "wagon car", "hatchback", "sedan", "ambulance", "roadster car", "beach wagon"],
"03001627": ["chair", "arm chair", "bowl chair", "rocking chair", "egg chair", "swivel chair", "bar stool", "ladder back chair", "throne", "office chair", "wheelchair", "stool", "barber chair", "folding chair", "lounge chair", "vertical back chair", "recliner", "wing chair", "sling"],
"03211117": ["monitor", "crt monitor"],
"03636649": ["lamp", "street lamp", "fluorescent lamp", "gas lamp", "bulb"],
"03691459": ["loudspeaker", "subwoofer speaker"],
"04090263": ["gun", "machine gun", "sniper rifle", "pistol", "shotgun"],
"04256520": ["sofa", "double couch", "love seat", "chesterfield", "convertiable sofa", "L shaped sofa", "settee sofa", "daybed", "sofa bed", "ottoman"],
"04379243": ["table", "dressing table", "desk", "refactory table", "counter", "operating table", "stand", "billiard table", "pool table", "ping-pong table", "console table"],
"04401088": ["phone", "desk phone", "flip-phone"],
"04530566": ["boat", "war ship", "sail boat", "speedboat", "cabin cruiser", "yacht"],
}
id_to_shape_attribute = {
"02691156": ["triangular"],
"02828884": ["square", "round", "circular", "rectangular", "thick", "thin"],
"02933112": ["cuboid", "round", "rectangular", "thick", "thin"] ,
"02958343": ["square", "round", "rectangular", "thick", "thin"],
"03001627": ["square", "round", "rectangular", "thick", "thin"],
"03211117": ["square", "round", "rectangular", "thick", "thin"],
"03636649": ["square", "round", "rectangular", "cuboid", "circular", "thick", "thin"],
"03691459": ["square", "round", "rectangular", "circular", "thick", "thin"],
"04090263": ["thick", "thin"],
"04256520": ["square", "round", "rectangular", "thick", "thin"],
"04379243": ["square", "round", "circular", "rectangular", "thick", "thin"],
"04401088": ["square", "rectangular", "thick", "thin"],
"04530566": ["square", "round", "rectangular", "thick", "thin"],
}
id_to_other_stuff = {
"02691156": ["boeing", "airbus", "f-16", "plane", "aeroplane", "aircraft", "commerical plane"],
"02828884": ["park bench"],
"02933112": ["dresser", "cupboard", "container", "case", "locker", "cupboard", "closet", "sideboard"] ,
"02958343": ["auto", "automobile", "motor car"],
"03001627": ["seat", "cathedra"],
"03211117": ["TV", "digital display", "flat panel display", "screen", "television", "telly", "video"],
"03636649": ["lantern", "table lamp", "torch"],
"03691459": ["speaker", "speaker unit", "tannoy"],
"04090263": ["ak-47", "uzi", "M1 Garand", "M-16","firearm", "shooter", "weapon"],
"04256520": ["couch", "lounge", "divan", "futon"],
"04379243": ["altar table", "worktop", "workbench"],
"04401088": ["telephone", "telephone set", "cellular telephone", "cellular phone", "cellphone", "cell", "mobile phone", "iphone"],
"04530566": ["rowing boat", "watercraft", "ship", "canal boat", "ferry", "steamboat", "barge"],
}
def generate_all_queries_2(prefix="a"):
all_queries = []
all_labels = []
for category_id in id_to_sub_category:
sub_category_queries = id_to_sub_category[category_id]
main_category = sub_category_queries[0]
new_prefix = prefix
for shape_attributes_query in id_to_shape_attribute[category_id]:
if prefix == "a" and shape_attributes_query[0] in ["a", "e", "i", "o", "u"]:
new_prefix = "an"
elif prefix == "a":
new_prefix = "a"
query = new_prefix + " " + shape_attributes_query + " " + main_category
all_queries.append(query)
all_labels.append(id_to_label[category_id])
for sub_category_query in sub_category_queries:
if prefix == "a" and sub_category_query[0] in ["a", "e", "i", "o", "u"]:
new_prefix = "an"
elif prefix == "a":
new_prefix = "a"
query = new_prefix + " " + sub_category_query
all_queries.append(query)
all_labels.append(id_to_label[category_id])
for other_query in id_to_other_stuff[category_id]:
if prefix == "a" and other_query[0] in ["a", "e", "i", "o", "u"]:
new_prefix = "an"
elif prefix == "a":
new_prefix = "a"
query = new_prefix + " " + other_query
all_queries.append(query)
all_labels.append(id_to_label[category_id])
return all_queries, all_labels
###################################### Text Queries ###############################################
def generate_voxel_32(net, latent_flow_model, clip_model, args, num_figs_per_query=5, prefix="a"):
net.eval()
latent_flow_model.eval()
clip_model.eval()
count = 1
num_figs = num_figs_per_query
with torch.no_grad():
voxel_size = 32
shape = (voxel_size, voxel_size, voxel_size)
p = visualization.make_3d_grid([-0.5] * 3, [+0.5] * 3, shape).type(torch.FloatTensor).to(args.device)
query_points = p.expand(num_figs, *p.size())
generated_voxel_array = []
total_labels_array = []
total_text_query, query_labels = generate_all_queries_2(prefix=prefix)
print(total_text_query)
count = 0
for text_in in tqdm(total_text_query):
##########
text = clip.tokenize([text_in]).to(args.device)
text_features = clip_model.encode_text(text)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
###########
label = query_labels[count]
mean_shape = torch.zeros(1, args.emb_dims).to(args.device)
noise = torch.Tensor(num_figs-1, args.emb_dims).normal_().to(args.device)
noise = torch.clip(noise, min=-1, max=1)
noise = torch.cat([mean_shape, noise], dim=0).float()
decoder_embs = latent_flow_model.sample(num_figs, noise=noise, cond_inputs=text_features.repeat(num_figs,1).float())
out = net.decoding(decoder_embs, query_points)
voxels_out = (out.view(num_figs, voxel_size, voxel_size, voxel_size) > args.threshold).detach().cpu().numpy()
#print(voxels_out.shape)
generated_voxel_array.append(voxels_out)
total_labels_array.append(label)
count = count + 1
generated_voxel_array = np.concatenate(generated_voxel_array)
total_labels_array = total_labels_array
return generated_voxel_array, total_labels_array
def get_true_voxels(test_dataloader, args):
voxel_array = []
for data in tqdm(test_dataloader):
data_input = data['voxels'].type(torch.FloatTensor).detach().cpu().numpy()
voxel_array.append(data_input)
#break
voxel_array = np.concatenate(voxel_array)
return voxel_array
def voxel_save(voxels, text_name, out_file=None, transpose=True, show=False):
# Use numpy
voxels = np.asarray(voxels)
# Create plot
#fig = plt.figure()
fig = plt.figure(figsize=(40,20))
ax = fig.add_subplot(111, projection=Axes3D.name)
if transpose == True:
voxels = voxels.transpose(2, 0, 1)
#else:
#voxels = voxels.transpose(2, 0, 1)
ax.voxels(voxels, edgecolor='k', facecolors='coral', linewidth=0.5)
ax.set_xlabel('Z')
ax.set_ylabel('X')
ax.set_zlabel('Y')
# Hide grid lines
plt.grid(False)
plt.axis('off')
if text_name != None:
plt.title(text_name, {'fontsize':30}, y=0.15)
#plt.text(15, -0.01, "Correlation Graph between Citation & Favorite Count")
ax.view_init(elev=30, azim=45)
if out_file is not None:
plt.axis('off')
plt.savefig(out_file)
if show:
plt.show()
plt.close(fig)
def save_voxel_images(net, latent_flow_model, clip_model, args, total_text_query, save_path, resolution=64, num_figs_per_query=5):
net.eval()
latent_flow_model.eval()
clip_model.eval()
count = 1
num_figs = num_figs_per_query
with torch.no_grad():
voxel_size = resolution
shape = (voxel_size, voxel_size, voxel_size)
p = visualization.make_3d_grid([-0.5] * 3, [+0.5] * 3, shape).type(torch.FloatTensor).to(args.device)
query_points = p.expand(num_figs, *p.size())
for text_in in tqdm(total_text_query):
##########
text = clip.tokenize([text_in]).to(args.device)
text_features = clip_model.encode_text(text)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
###########
torch.manual_seed(5)
mean_shape = torch.zeros(1, args.emb_dims).to(args.device)
noise = torch.Tensor(num_figs-1, args.emb_dims).normal_().to(args.device)
noise = torch.clip(noise, min=-1, max=1)
noise = torch.cat([mean_shape, noise], dim=0)
decoder_embs = latent_flow_model.sample(num_figs, noise=noise, cond_inputs=text_features.repeat(num_figs,1))
out = net.decoding(decoder_embs, query_points)
voxels_out = (out.view(num_figs, voxel_size, voxel_size, voxel_size) > args.threshold).detach().cpu().numpy()
voxel_num = 0
for voxel_in in voxels_out:
out_file = os.path.join(save_path, text_in + "_" + str(voxel_num) + ".png")
voxel_save(voxel_in, None, out_file=out_file)
voxel_num = voxel_num + 1
##################################### Main and Parser stuff #################################################3
def get_local_parser_test(mode="args"):
parser = get_local_parser(mode="parser")
parser.add_argument("--experiment_mode", type=str, default='save_voxel_on_query', metavar='N', help='experiment type')
parser.add_argument("--classifier_checkpoint", type=str, default="./exps/classifier/checkpoints/best.pt", metavar='N', help='what is the classifier checkpoint for FID, Acc and Stuff')
parser.add_argument("--checkpoint_nf", type=str, default="best", metavar='N', help='what is the checkpoint for nf')
parser.add_argument("--prefix", type=str, default="a", metavar='N', help='add or remove')
parser.add_argument("--post_dataset", type=str, default=None, help='if want to use diff dataset during post')
parser.add_argument("--checkpoint_dir_base", type=str, default=None, help='Checkpoint directory for autoencoder')
parser.add_argument("--output_dir", type=str, default="./exps/output_dir", help='output dir')
parser.add_argument("--checkpoint_dir_prior", type=str, default=None, help='Checkpoint for prior')
args = parser.parse_args()
if mode == "args":
args = parser.parse_args()
return args
else:
return parser
def main():
args = get_local_parser_test()
### Directories for generating stuff and logs cls_cal_category
test_log_filename = osp.join(args.output_dir, 'test_log.txt')
helper.create_dir(args.output_dir)
helper.setup_logging(test_log_filename, args.log_level, 'w')
args.query_generate_dir = osp.join(args.output_dir, 'query_generate_dir') + "/"
helper.create_dir(args.query_generate_dir)
args.vis_gen_dir = osp.join(args.output_dir, 'vis_gen_dir') + "/"
helper.create_dir(args.vis_gen_dir)
manualSeed = args.seed_nf
helper.set_seed(manualSeed)
### Dataloader stuff
if args.experiment_mode not in ["save_voxel_on_query", "cls_cal_single", "cls_cal_category"]:
logging.info("#############################")
train_dataloader, total_shapes = get_dataloader(args, split="train")
args.total_shapes = total_shapes
logging.info("Train Dataset size: {}".format(total_shapes))
val_dataloader, total_shapes_val = get_dataloader(args, split="val")
logging.info("Val Dataset size: {}".format(total_shapes_val))
test_dataloader, total_shapes_test, test_dataset = get_dataloader(args, split="test", dataset_flag=True)
logging.info("Test Dataset size: {}".format(total_shapes_test))
logging.info("#############################")
device, gpu_array = helper.get_device(args)
args.device = device
### Network stuff
logging.info("#############################")
net = autoencoder.get_model(args).to(args.device)
checkpoint = torch.load(args.checkpoint_dir_base +"/"+ args.checkpoint +".pt", map_location=args.device)
net.load_state_dict(checkpoint['model'])
net.eval()
logging.info("Loaded the autoencoder: {}".format(args.checkpoint_dir_base +"/"+ args.checkpoint +".pt"))
args, clip_model = get_clip_model(args)
latent_flow_network = latent_flows.get_generator(args.emb_dims, args.cond_emb_dim, device, flow_type=args.flow_type, num_blocks=args.num_blocks, num_hidden=args.num_hidden)
checkpoint_nf_path = os.path.join(args.checkpoint_dir_prior, args.checkpoint_nf +".pt")
logging.info("Loaded the nf model: {}".format(checkpoint_nf_path))
checkpoint = torch.load(checkpoint_nf_path, map_location=args.device)
latent_flow_network.load_state_dict(checkpoint['model'])
latent_flow_network.eval()
logging.info("#############################")
logging.info("Conducting the experiment {}".format(args.experiment_mode))
if args.experiment_mode == "fid_cal":
torch.multiprocessing.set_sharing_strategy('file_system')
generated_voxels, _ = generate_voxel_32(net, latent_flow_network, clip_model, args, num_figs_per_query=1)
true_voxels = get_true_voxels(test_dataloader, args)
logging.info("Size of generated {} and true voxel is {}".format(generated_voxels.shape, true_voxels.shape))
import classifier
from fid_cal import calculate_activation_statistics, calculate_frechet_distance
cls = classifier.classifier_32("Voxel_Encoder_BN", 13).to(args.device)
cls_checkpoint = torch.load(args.classifier_checkpoint, map_location=args.device)
cls.load_state_dict(cls_checkpoint['model'])
activations1, _ = classifier.get_activations(true_voxels, cls, args)
activations2, _ = classifier.get_activations(generated_voxels, cls, args)
logging.info("Size of activatation for true {} and generated voxel is {}".format(activations1.shape, activations2.shape))
mu1, sigma1 = calculate_activation_statistics(activations1)
mu2, sigma2 = calculate_activation_statistics(activations2)
fid_score = calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6)
logging.info("FID score is: {}".format(fid_score))
elif args.experiment_mode == "cls_cal_single":
torch.multiprocessing.set_sharing_strategy('file_system')
generated_voxels, query_labels = generate_voxel_32(net, latent_flow_network, clip_model, args, num_figs_per_query=1)
logging.info("Size of generated voxel is {} and label length {}".format(generated_voxels.shape, len(query_labels)))
import classifier
from fid_cal import calculate_activation_statistics, calculate_frechet_distance
from sklearn.metrics import accuracy_score
cls = classifier.classifier_32("Voxel_Encoder_BN", 13).to(args.device)
cls_checkpoint = torch.load(args.classifier_checkpoint, map_location=args.device)
cls.load_state_dict(cls_checkpoint['model'])
activations, pred_labels = classifier.get_activations(generated_voxels, cls, args)
logging.info("Size of activations is {} and pred labels is {}".format(activations.shape, pred_labels.shape))
acc = 100*accuracy_score(query_labels, pred_labels)
logging.info("Cls score is: {}".format(acc))
elif args.experiment_mode == "cls_cal_category":
torch.multiprocessing.set_sharing_strategy('file_system')
generated_voxels, query_labels = generate_voxel_32(net, latent_flow_network, clip_model, args, num_figs_per_query=1)
logging.info("Size of generated voxel is {} and label length {}".format(generated_voxels.shape, len(query_labels)))
import classifier
from fid_cal import calculate_activation_statistics, calculate_frechet_distance
from sklearn.metrics import accuracy_score
cls = classifier.classifier_32("Voxel_Encoder_BN", 13).to(args.device)
cls_checkpoint = torch.load(args.classifier_checkpoint, map_location=args.device)
cls.load_state_dict(cls_checkpoint['model'])
activations, pred_labels = classifier.get_activations(generated_voxels, cls, args)
logging.info("Size of activations is {} and pred labels is {}".format(activations.shape, pred_labels.shape))
conf_matrix = confusion_matrix(query_labels, pred_labels)
count = 0
for i in conf_matrix:
category_name = label_to_category[count]
total_labels = query_labels.count(count)
acc = (conf_matrix[count,count]/ total_labels) *100
logging.info("Cls score for class {}, total labels {} is: {}".format(category_name, total_labels, acc))
count = count + 1
acc = 100*accuracy_score(query_labels, pred_labels)
logging.info("Cls score is: {}".format(acc))
elif args.experiment_mode == "save_voxel_on_query":
save_path = args.vis_gen_dir
if not os.path.exists(save_path):
os.makedirs(save_path)
torch.multiprocessing.set_sharing_strategy('file_system')
if args.text_query is None:
logging.info("Please add text query using text_query args argument")
else:
save_voxel_images(net, latent_flow_network, clip_model, args, args.text_query, save_path, resolution=64, num_figs_per_query=1)
if __name__ == "__main__":
main()