forked from Ultimaker/Cura
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_gcode_buffer.py
executable file
·542 lines (443 loc) · 24.1 KB
/
check_gcode_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#!/usr/bin/env python3
# Copyright (c) 2020 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
import copy
import math
import os
import sys
from typing import Dict, List, Optional, Tuple
# ====================================
# Constants and Default Values
# ====================================
DEFAULT_BUFFER_FILLING_RATE_IN_C_PER_S = 50.0 # The buffer filling rate in #commands/s
DEFAULT_BUFFER_SIZE = 15 # The buffer size in #commands
MINIMUM_PLANNER_SPEED = 0.05
#Setting values for Ultimaker S5.
MACHINE_MAX_FEEDRATE_X = 300
MACHINE_MAX_FEEDRATE_Y = 300
MACHINE_MAX_FEEDRATE_Z = 40
MACHINE_MAX_FEEDRATE_E = 45
MACHINE_MAX_ACCELERATION_X = 9000
MACHINE_MAX_ACCELERATION_Y = 9000
MACHINE_MAX_ACCELERATION_Z = 100
MACHINE_MAX_ACCELERATION_E = 10000
MACHINE_MAX_JERK_XY = 20
MACHINE_MAX_JERK_Z = 0.4
MACHINE_MAX_JERK_E = 5
MACHINE_MINIMUM_FEEDRATE = 0.001
MACHINE_ACCELERATION = 3000
def get_code_and_num(gcode_line: str) -> Tuple[str, str]:
"""Gets the code and number from the given g-code line."""
gcode_line = gcode_line.strip()
cmd_code = gcode_line[0].upper()
cmd_num = str(gcode_line[1:])
return cmd_code, cmd_num
def get_value_dict(parts: List[str]) -> Dict[str, str]:
"""Fetches arguments such as X1 Y2 Z3 from the given part list and returns a dict"""
value_dict = {}
for p in parts:
p = p.strip()
if not p:
continue
code, num = get_code_and_num(p)
value_dict[code] = num
return value_dict
# ============================
# Math Functions - Begin
# ============================
def calc_distance(pos1, pos2):
delta = {k: pos1[k] - pos2[k] for k in pos1}
distance = 0
for value in delta.values():
distance += value ** 2
distance = math.sqrt(distance)
return distance
def calc_acceleration_distance(init_speed: float, target_speed: float, acceleration: float) -> float:
"""Given the initial speed, the target speed, and the acceleration
calculate the distance that's needed for the acceleration to finish.
"""
if acceleration == 0:
return 0.0
return (target_speed ** 2 - init_speed ** 2) / (2 * acceleration)
def calc_acceleration_time_from_distance(initial_feedrate: float, distance: float, acceleration: float) -> float:
"""Gives the time it needs to accelerate from an initial speed to reach a final distance."""
discriminant = initial_feedrate ** 2 - 2 * acceleration * -distance
#If the discriminant is negative, we're moving in the wrong direction.
#Making the discriminant 0 then gives the extremum of the parabola instead of the intersection.
discriminant = max(0, discriminant)
return (-initial_feedrate + math.sqrt(discriminant)) / acceleration
def calc_intersection_distance(initial_feedrate: float, final_feedrate: float, acceleration: float, distance: float) -> float:
"""Calculates the point at which you must start braking.
This gives the distance from the start of a line at which you must start
decelerating (at a rate of `-acceleration`) if you started at speed
`initial_feedrate` and accelerated until this point and want to end at the
`final_feedrate` after a total travel of `distance`. This can be used to
compute the intersection point between acceleration and deceleration in the
cases where the trapezoid has no plateau (i.e. never reaches maximum speed).
"""
if acceleration == 0:
return 0
return (2 * acceleration * distance - initial_feedrate * initial_feedrate + final_feedrate * final_feedrate) / (4 * acceleration)
def calc_max_allowable_speed(acceleration: float, target_velocity: float, distance: float) -> float:
"""Calculates the maximum speed that is allowed at this point when you must be
able to reach target_velocity using the acceleration within the allotted
distance.
"""
return math.sqrt(target_velocity * target_velocity - 2 * acceleration * distance)
class Command:
def __init__(self, cmd_str: str) -> None:
self._cmd_str = cmd_str # type: str
self.estimated_exec_time = 0.0 # type: float
self._cmd_process_function_map = {
"G": self._handle_g,
"M": self._handle_m,
"T": self._handle_t,
}
self._is_comment = False # type: bool
self._is_empty = False # type: bool
#Fields taken from CuraEngine's implementation.
self._recalculate = False
self._accelerate_until = 0
self._decelerate_after = 0
self._initial_feedrate = 0
self._final_feedrate = 0
self._entry_speed = 0
self._max_entry_speed =0
self._nominal_length = False
self._nominal_feedrate = 0
self._max_travel = 0
self._distance = 0
self._acceleration = 0
self._delta = [0, 0, 0]
self._abs_delta = [0, 0, 0]
def calculate_trapezoid(self, entry_factor, exit_factor):
"""Calculate the velocity-time trapezoid function for this move.
Each move has a three-part function mapping time to velocity.
"""
initial_feedrate = self._nominal_feedrate * entry_factor
final_feedrate = self._nominal_feedrate * exit_factor
#How far are we accelerating and how far are we decelerating?
accelerate_distance = calc_acceleration_distance(initial_feedrate, self._nominal_feedrate, self._acceleration)
decelerate_distance = calc_acceleration_distance(self._nominal_feedrate, final_feedrate, -self._acceleration)
plateau_distance = self._distance - accelerate_distance - decelerate_distance #And how far in between at max speed?
#Is the plateau negative size? That means no cruising, and we'll have to
#use intersection_distance to calculate when to abort acceleration and
#start braking in order to reach the final_rate exactly at the end of
#this command.
if plateau_distance < 0:
accelerate_distance = calc_intersection_distance(initial_feedrate, final_feedrate, self._acceleration, self._distance)
accelerate_distance = max(accelerate_distance, 0) #Due to rounding errors.
accelerate_distance = min(accelerate_distance, self._distance)
plateau_distance = 0
self._accelerate_until = accelerate_distance
self._decelerate_after = accelerate_distance + plateau_distance
self._initial_feedrate = initial_feedrate
self._final_feedrate = final_feedrate
@property
def is_command(self) -> bool:
return not self._is_comment and not self._is_empty
def __str__(self) -> str:
if self._is_comment or self._is_empty:
return self._cmd_str
info = "t=%s" % (self.estimated_exec_time)
return self._cmd_str.strip() + " ; --- " + info + os.linesep
def parse(self) -> None:
"""Estimates the execution time of this command and calculates the state after this command is executed."""
line = self._cmd_str.strip()
if not line:
self._is_empty = True
return
if line.startswith(";"):
self._is_comment = True
return
# Remove comment
line = line.split(";", 1)[0].strip()
parts = line.split(" ")
cmd_code, cmd_num = get_code_and_num(parts[0])
cmd_num = int(cmd_num)
func = self._cmd_process_function_map.get(cmd_code)
if func is None:
print("!!! no handle function for command type [%s]" % cmd_code)
return
func(cmd_num, parts)
def _handle_g(self, cmd_num: int, parts: List[str]) -> None:
self.estimated_exec_time = 0.0
# G10: Retract. Make this behave as if it's a retraction of 25mm.
if cmd_num == 10:
#TODO: If already retracted, this shouldn't add anything to the time.
cmd_num = 1
parts = ["G1", "E" + str(buf.current_position[3] - 25)]
# G11: Unretract. Make this behave as if it's an unretraction of 25mm.
elif cmd_num == 11:
#TODO: If already unretracted, this shouldn't add anything to the time.
cmd_num = 1
parts = ["G1", "E" + str(buf.current_position[3] + 25)]
# G0 and G1: Move
if cmd_num in (0, 1):
# Move
if len(parts) > 0:
value_dict = get_value_dict(parts[1:])
new_position = copy.deepcopy(buf.current_position)
new_position[0] = float(value_dict.get("X", new_position[0]))
new_position[1] = float(value_dict.get("Y", new_position[1]))
new_position[2] = float(value_dict.get("Z", new_position[2]))
new_position[3] = float(value_dict.get("E", new_position[3]))
buf.current_feedrate = float(value_dict.get("F", buf.current_feedrate * 60.0)) / 60.0
if buf.current_feedrate < MACHINE_MINIMUM_FEEDRATE:
buf.current_feedrate = MACHINE_MINIMUM_FEEDRATE
self._delta = [
new_position[0] - buf.current_position[0],
new_position[1] - buf.current_position[1],
new_position[2] - buf.current_position[2],
new_position[3] - buf.current_position[3]
]
self._abs_delta = [abs(x) for x in self._delta]
self._max_travel = max(self._abs_delta)
if self._max_travel > 0:
self._nominal_feedrate = buf.current_feedrate
self._distance = math.sqrt(self._abs_delta[0] ** 2 + self._abs_delta[1] ** 2 + self._abs_delta[2] ** 2)
if self._distance == 0:
self._distance = self._abs_delta[3]
current_feedrate = [d * self._nominal_feedrate / self._distance for d in self._delta]
current_abs_feedrate = [abs(f) for f in current_feedrate]
feedrate_factor = min(1.0, MACHINE_MAX_FEEDRATE_X)
feedrate_factor = min(feedrate_factor, MACHINE_MAX_FEEDRATE_Y)
feedrate_factor = min(feedrate_factor, buf.max_z_feedrate)
feedrate_factor = min(feedrate_factor, MACHINE_MAX_FEEDRATE_E)
#TODO: XY_FREQUENCY_LIMIT
current_feedrate = [f * feedrate_factor for f in current_feedrate]
current_abs_feedrate = [f * feedrate_factor for f in current_abs_feedrate]
self._nominal_feedrate *= feedrate_factor
self._acceleration = MACHINE_ACCELERATION
max_accelerations = [MACHINE_MAX_ACCELERATION_X, MACHINE_MAX_ACCELERATION_Y, MACHINE_MAX_ACCELERATION_Z, MACHINE_MAX_ACCELERATION_E]
for n in range(len(max_accelerations)):
if self._acceleration * self._abs_delta[n] / self._distance > max_accelerations[n]:
self._acceleration = max_accelerations[n]
vmax_junction = MACHINE_MAX_JERK_XY / 2
vmax_junction_factor = 1.0
if current_abs_feedrate[2] > buf.max_z_jerk / 2:
vmax_junction = min(vmax_junction, buf.max_z_jerk)
if current_abs_feedrate[3] > buf.max_e_jerk / 2:
vmax_junction = min(vmax_junction, buf.max_e_jerk)
vmax_junction = min(vmax_junction, self._nominal_feedrate)
safe_speed = vmax_junction
if buf.previous_nominal_feedrate > 0.0001:
xy_jerk = math.sqrt((current_feedrate[0] - buf.previous_feedrate[0]) ** 2 + (current_feedrate[1] - buf.previous_feedrate[1]) ** 2)
vmax_junction = self._nominal_feedrate
if xy_jerk > MACHINE_MAX_JERK_XY:
vmax_junction_factor = MACHINE_MAX_JERK_XY / xy_jerk
if abs(current_feedrate[2] - buf.previous_feedrate[2]) > MACHINE_MAX_JERK_Z:
vmax_junction_factor = min(vmax_junction_factor, (MACHINE_MAX_JERK_Z / abs(current_feedrate[2] - buf.previous_feedrate[2])))
if abs(current_feedrate[3] - buf.previous_feedrate[3]) > MACHINE_MAX_JERK_E:
vmax_junction_factor = min(vmax_junction_factor, (MACHINE_MAX_JERK_E / abs(current_feedrate[3] - buf.previous_feedrate[3])))
vmax_junction = min(buf.previous_nominal_feedrate, vmax_junction * vmax_junction_factor) #Limit speed to max previous speed.
self._max_entry_speed = vmax_junction
v_allowable = calc_max_allowable_speed(-self._acceleration, MINIMUM_PLANNER_SPEED, self._distance)
self._entry_speed = min(vmax_junction, v_allowable)
self._nominal_length = self._nominal_feedrate <= v_allowable
self._recalculate = True
buf.previous_feedrate = current_feedrate
buf.previous_nominal_feedrate = self._nominal_feedrate
buf.current_position = new_position
self.calculate_trapezoid(self._entry_speed / self._nominal_feedrate, safe_speed / self._nominal_feedrate)
self.estimated_exec_time = -1 #Signal that we need to include this in our second pass.
# G4: Dwell, pause the machine for a period of time.
elif cmd_num == 4:
# Pnnn is time to wait in milliseconds (P0 wait until all previous moves are finished)
cmd, num = get_code_and_num(parts[1])
num = float(num)
if cmd == "P":
if num > 0:
self.estimated_exec_time = num
def _handle_m(self, cmd_num: int, parts: List[str]) -> None:
self.estimated_exec_time = 0.0
# M203: Set maximum feedrate. Only Z is supported. Assume 0 execution time.
if cmd_num == 203:
value_dict = get_value_dict(parts[1:])
buf.max_z_feedrate = value_dict.get("Z", buf.max_z_feedrate)
# M204: Set default acceleration. Assume 0 execution time.
if cmd_num == 204:
value_dict = get_value_dict(parts[1:])
buf.acceleration = value_dict.get("S", buf.acceleration)
# M205: Advanced settings, we only set jerks for Griffin. Assume 0 execution time.
if cmd_num == 205:
value_dict = get_value_dict(parts[1:])
buf.max_xy_jerk = value_dict.get("XY", buf.max_xy_jerk)
buf.max_z_jerk = value_dict.get("Z", buf.max_z_jerk)
buf.max_e_jerk = value_dict.get("E", buf.max_e_jerk)
def _handle_t(self, cmd_num: int, parts: List[str]) -> None:
# Tn: Switching extruder. Assume 0 seconds. Actually more like 2.
self.estimated_exec_time = 0.0
class CommandBuffer:
def __init__(self, all_lines: List[str],
buffer_filling_rate: float = DEFAULT_BUFFER_FILLING_RATE_IN_C_PER_S,
buffer_size: int = DEFAULT_BUFFER_SIZE
) -> None:
self._all_lines = all_lines
self._all_commands = list()
self._buffer_filling_rate = buffer_filling_rate # type: float
self._buffer_size = buffer_size # type: int
self.acceleration = 3000
self.current_position = [0, 0, 0, 0]
self.current_feedrate = 0
self.max_xy_jerk = MACHINE_MAX_JERK_XY
self.max_z_jerk = MACHINE_MAX_JERK_Z
self.max_e_jerk = MACHINE_MAX_JERK_E
self.max_z_feedrate = MACHINE_MAX_FEEDRATE_Z
# If the buffer can depletes less than this amount time, it can be filled up in time.
lower_bound_buffer_depletion_time = self._buffer_size / self._buffer_filling_rate # type: float
self._detection_time_frame = lower_bound_buffer_depletion_time
self._code_count_limit = self._buffer_size
self.total_time = 0.0
self.previous_feedrate = [0, 0, 0, 0]
self.previous_nominal_feedrate = 0
print("Command speed: %s" % buffer_filling_rate)
print("Code Limit: %s" % self._code_count_limit)
self._bad_frame_ranges = []
def process(self) -> None:
buf.total_time = 0.0
cmd0_idx = 0
total_frame_time = 0.0
cmd_count = 0
for idx, line in enumerate(self._all_lines):
cmd = Command(line)
cmd.parse()
if not cmd.is_command:
continue
self._all_commands.append(cmd)
#Second pass: Reverse kernel.
kernel_commands = [None, None, None]
for cmd in reversed(self._all_commands):
if cmd.estimated_exec_time >= 0:
continue #Not a movement command.
kernel_commands[2] = kernel_commands[1]
kernel_commands[1] = kernel_commands[0]
kernel_commands[0] = cmd
self.reverse_pass_kernel(kernel_commands[0], kernel_commands[1], kernel_commands[2])
#Third pass: Forward kernel.
kernel_commands = [None, None, None]
for cmd in self._all_commands:
if cmd.estimated_exec_time >= 0:
continue #Not a movement command.
kernel_commands[0] = kernel_commands[1]
kernel_commands[1] = kernel_commands[2]
kernel_commands[2] = cmd
self.forward_pass_kernel(kernel_commands[0], kernel_commands[1], kernel_commands[2])
self.forward_pass_kernel(kernel_commands[1], kernel_commands[2], None)
#Fourth pass: Recalculate the commands that have _recalculate set.
previous = None
current = None
for current in self._all_commands:
if current.estimated_exec_time >= 0:
current = None
continue #Not a movement command.
if previous:
#Recalculate if current command entry or exit junction speed has changed.
if previous._recalculate or current._recalculate:
#Note: Entry and exit factors always >0 by all previous logic operators.
previous.calculate_trapezoid(previous._entry_speed / previous._nominal_feedrate, current._entry_speed / previous._nominal_feedrate)
previous._recalculate = False
previous = current
if current is not None and current.estimated_exec_time >= 0:
current.calculate_trapezoid(current._entry_speed / current._nominal_feedrate, MINIMUM_PLANNER_SPEED / current._nominal_feedrate)
current._recalculate = False
#Fifth pass: Compute time for movement commands.
for cmd in self._all_commands:
if cmd.estimated_exec_time >= 0:
continue #Not a movement command.
plateau_distance = cmd._decelerate_after - cmd._accelerate_until
cmd.estimated_exec_time = calc_acceleration_time_from_distance(cmd._initial_feedrate, cmd._accelerate_until, cmd._acceleration)
cmd.estimated_exec_time += plateau_distance / cmd._nominal_feedrate
cmd.estimated_exec_time += calc_acceleration_time_from_distance(cmd._final_feedrate, (cmd._distance - cmd._decelerate_after), cmd._acceleration)
for idx, cmd in enumerate(self._all_commands):
cmd_count += 1
if idx > cmd0_idx or idx == 0:
buf.total_time += cmd.estimated_exec_time
total_frame_time += cmd.estimated_exec_time
if total_frame_time > 1:
# Find the next starting command which makes the total execution time of the frame to be less than
# 1 second.
cmd0_idx += 1
total_frame_time -= self._all_commands[cmd0_idx].estimated_exec_time
cmd_count -= 1
while total_frame_time > 1:
cmd0_idx += 1
total_frame_time -= self._all_commands[cmd0_idx].estimated_exec_time
cmd_count -= 1
# If within the current time frame the code count exceeds the limit, record that.
if total_frame_time <= self._detection_time_frame and cmd_count > self._code_count_limit:
need_to_append = True
if self._bad_frame_ranges:
last_item = self._bad_frame_ranges[-1]
if last_item["start_line"] == cmd0_idx:
last_item["end_line"] = idx
last_item["cmd_count"] = cmd_count
last_item["time"] = total_frame_time
need_to_append = False
if need_to_append:
self._bad_frame_ranges.append({"start_line": cmd0_idx,
"end_line": idx,
"cmd_count": cmd_count,
"time": total_frame_time})
def reverse_pass_kernel(self, previous: Optional[Command], current: Optional[Command], next: Optional[Command]) -> None:
if not current or not next:
return
#If entry speed is already at the maximum entry speed, no need to
#recheck. The command is cruising. If not, the command is in state of
#acceleration or deceleration. Reset entry speed to maximum and check
#for maximum allowable speed reductions to ensure maximum possible
#planned speed.
if current._entry_speed != current._max_entry_speed:
#If nominal length is true, max junction speed is guaranteed to be
#reached. Only compute for max allowable speed if block is
#decelerating and nominal length is false.
if not current._nominal_length and current._max_entry_speed > next._max_entry_speed:
current._entry_speed = min(current._max_entry_speed, calc_max_allowable_speed(-current._acceleration, next._entry_speed, current._distance))
else:
current._entry_speed = current._max_entry_speed
current._recalculate = True
def forward_pass_kernel(self, previous: Optional[Command], current: Optional[Command], next: Optional[Command]) -> None:
if not previous:
return
#If the previous command is an acceleration command, but it is not long
#enough to complete the full speed change within the command, we need to
#adjust the entry speed accordingly. Entry speeds have already been
#reset, maximised and reverse planned by the reverse planner. If nominal
#length is set, max junction speed is guaranteed to be reached. No need
#to recheck.
if not previous._nominal_length:
if previous._entry_speed < current._entry_speed:
entry_speed = min(current._entry_speed, calc_max_allowable_speed(-previous._acceleration, previous._entry_speed, previous._distance))
if current._entry_speed != entry_speed:
current._entry_speed = entry_speed
current._recalculate = True
def to_file(self, file_name: str) -> None:
all_lines = [str(c) for c in self._all_commands]
with open(file_name, "w", encoding = "utf-8") as f:
f.writelines(all_lines)
f.write(";---TOTAL ESTIMATED TIME:" + str(self.total_time))
def report(self) -> None:
for item in self._bad_frame_ranges:
print("Potential buffer underrun from line {start_line} to {end_line}, code count = {code_count}, in {time}s ({speed} cmd/s)".format(
start_line = item["start_line"],
end_line = item["end_line"],
code_count = item["cmd_count"],
time = round(item["time"], 4),
speed = round(item["cmd_count"] / item["time"], 2)))
print("Total predicted number of buffer underruns:", len(self._bad_frame_ranges))
if __name__ == "__main__":
if len(sys.argv) < 2 or 3 < len(sys.argv):
print("Usage: <input g-code> [output g-code]")
sys.exit(1)
in_filename = sys.argv[1]
out_filename = None
if len(sys.argv) == 3:
out_filename = sys.argv[2]
with open(in_filename, "r", encoding = "utf-8") as f:
all_lines = f.readlines()
buf = CommandBuffer(all_lines)
buf.process()
# Output annotated gcode is optional
if out_filename is not None:
buf.to_file(out_filename)
buf.report()