|
| 1 | +#coding:utf-8 |
| 2 | + |
| 3 | +''' |
| 4 | +Author:wepon |
| 5 | +Code:https://github.com/wepe |
| 6 | +
|
| 7 | +File:cnn.py |
| 8 | + GPU run command: |
| 9 | + THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cnn.py |
| 10 | + CPU run command: |
| 11 | + python cnn.py |
| 12 | +''' |
| 13 | +#导入各种用到的模块组件 |
| 14 | +from __future__ import absolute_import |
| 15 | +from __future__ import print_function |
| 16 | +from keras.models import Sequential |
| 17 | +from keras.layers.core import Dense, Dropout, Activation, Flatten |
| 18 | +from keras.layers.convolutional import Convolution2D, MaxPooling2D |
| 19 | +from keras.optimizers import SGD |
| 20 | +from keras.utils import np_utils, generic_utils |
| 21 | +from six.moves import range |
| 22 | +from data import load_data |
| 23 | +import random,cPickle |
| 24 | + |
| 25 | + |
| 26 | +nb_epoch = 5 |
| 27 | +batch_size = 100 |
| 28 | +nb_class = 10 |
| 29 | +#加载数据 |
| 30 | +data, label = load_data() |
| 31 | + |
| 32 | +#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数 |
| 33 | +label = np_utils.to_categorical(label, nb_class) |
| 34 | + |
| 35 | +#14layer, one "add" represent one layer |
| 36 | +def create_model(): |
| 37 | + model = Sequential() |
| 38 | + model.add(Convolution2D(4, 1, 5, 5, border_mode='valid')) |
| 39 | + model.add(Activation('relu')) |
| 40 | + |
| 41 | + model.add(Convolution2D(8,4, 3, 3, border_mode='valid')) |
| 42 | + model.add(Activation('relu')) |
| 43 | + model.add(MaxPooling2D(poolsize=(2, 2))) |
| 44 | + |
| 45 | + model.add(Convolution2D(16, 8, 3, 3, border_mode='valid')) |
| 46 | + model.add(Activation('relu')) |
| 47 | + model.add(MaxPooling2D(poolsize=(2, 2))) |
| 48 | + |
| 49 | + model.add(Flatten()) |
| 50 | + model.add(Dense(16*4*4, 128, init='normal')) |
| 51 | + model.add(Activation('relu')) |
| 52 | + model.add(Dropout(0.2)) |
| 53 | + |
| 54 | + model.add(Dense(128, nb_class, init='normal')) |
| 55 | + model.add(Activation('softmax')) |
| 56 | + return model |
| 57 | + |
| 58 | + |
| 59 | +############# |
| 60 | +#开始训练模型 |
| 61 | +############## |
| 62 | +model = create_model() |
| 63 | +sgd = SGD(l2=0.0,lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) |
| 64 | +model.compile(loss='categorical_crossentropy', optimizer=sgd) |
| 65 | + |
| 66 | +(X_train,X_val) = (data[0:30000],data[30000:]) |
| 67 | +(Y_train,Y_val) = (label[0:30000],label[30000:]) |
| 68 | +best_accuracy = 0.0 |
| 69 | +for e in range(nb_epoch): |
| 70 | + #shuffle the data each epoch |
| 71 | + num = len(Y_train) |
| 72 | + index = [i for i in range(num)] |
| 73 | + random.shuffle(index) |
| 74 | + X_train = X_train[index] |
| 75 | + Y_train = Y_train[index] |
| 76 | + |
| 77 | + print('Epoch', e) |
| 78 | + print("Training...") |
| 79 | + batch_num = len(Y_train)/batch_size |
| 80 | + progbar = generic_utils.Progbar(X_train.shape[0]) |
| 81 | + for i in range(batch_num): |
| 82 | + loss,accuracy = model.train(X_train[i*batch_size:(i+1)*batch_size], Y_train[i*batch_size:(i+1)*batch_size],accuracy=True) |
| 83 | + progbar.add(batch_size, values=[("train loss", loss),("train accuracy:", accuracy)] ) |
| 84 | + |
| 85 | + #save the model of best val-accuracy |
| 86 | + print("Validation...") |
| 87 | + val_loss,val_accuracy = model.evaluate(X_val, Y_val, batch_size=1,show_accuracy=True) |
| 88 | + if best_accuracy<val_accuracy: |
| 89 | + best_accuracy = val_accuracy |
| 90 | + cPickle.dump(model,open("./model.pkl","wb")) |
0 commit comments