-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetwork.js
96 lines (80 loc) · 2.41 KB
/
network.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
class NeuralNetwork{
constructor(neuronCounts){
this.levels=[];
for(let i=0;i<neuronCounts.length-1;i++){
this.levels.push(new Level(
neuronCounts[i],neuronCounts[i+1]
));
}
}
static feedForward(givenInputs,network){
let outputs=Level.feedForward(
givenInputs,network.levels[0]
);
for(let i=1;i<network.levels.length;i++){
outputs=Level.feedForward(
outputs,network.levels[i]
);
return outputs;
}
}
static mutate(network,amount=1){
network.levels.forEach(level =>{
for(let i=0;i<level.biases.length;i++){
level.biases[i] = lerp(
level.biases[i],
Math.random()*2-1,
amount
)
}
for(let i=0;i<level.weights.length;i++){
for(let j=0;j<level.weights[i].length;j++){
level.weights[i][j]=lerp(
level.weights[i][j],
Math.random()*2-1,
amount
)
}
}
});
}
}
class Level{
constructor(inputCount,outputCount){
this.inputs=new Array(inputCount);
this.outputs=new Array(outputCount);
this.biases=new Array(outputCount);
this.weights=[];
for(let i=0;i<inputCount;i++){
this.weights[i]=new Array(outputCount);
}
Level.#randomize(this);
}
static #randomize(level){
for(let i=0;i<level.inputs.length;i++){
for(let j=0;j<level.outputs.length;j++){
level.weights[i][j]=Math.random()*2-1;
}
}
for(let i=0;i<level.biases.length;i++){
level.biases[i]=Math.random()*2-1;
}
}
static feedForward(givenInputs,level){
for(let i=0;i<level.inputs.length;i++){
level.inputs[i]=givenInputs[i];
}
for(let i=0;i<level.outputs.length;i++){
let sum=0
for(let j=0;j<level.inputs.length;j++){
sum+=level.inputs[j]*level.weights[j][i];
}
if(sum>level.biases[i]){
level.outputs[i]=1;
}else{
level.outputs[i]=0;
}
}
return level.outputs;
}
}