forked from beerensahu/deeplab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extractor.py
263 lines (225 loc) · 9.28 KB
/
feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Extracts features for different models."""
import functools
import tensorflow as tf
from core import xception
#from nets.mobilenet import mobilenet as mobilenet_lib
#from nets.mobilenet import mobilenet_v2
slim = tf.contrib.slim
# Default end point for MobileNetv2.
_MOBILENET_V2_FINAL_ENDPOINT = 'layer_18'
def _mobilenet_v2(net,
depth_multiplier,
output_stride,
reuse=None,
scope=None,
final_endpoint=None):
"""Auxiliary function to add support for 'reuse' to mobilenet_v2.
Args:
net: Input tensor of shape [batch_size, height, width, channels].
depth_multiplier: Float multiplier for the depth (number of channels)
for all convolution ops. The value must be greater than zero. Typical
usage will be to set this value in (0, 1) to reduce the number of
parameters or computation cost of the model.
output_stride: An integer that specifies the requested ratio of input to
output spatial resolution. If not None, then we invoke atrous convolution
if necessary to prevent the network from reducing the spatial resolution
of the activation maps. Allowed values are 8 (accurate fully convolutional
mode), 16 (fast fully convolutional mode), 32 (classification mode).
reuse: Reuse model variables.
scope: Optional variable scope.
final_endpoint: The endpoint to construct the network up to.
Returns:
Features extracted by MobileNetv2.
"""
with tf.variable_scope(
scope, 'MobilenetV2', [net], reuse=reuse) as scope:
return mobilenet_lib.mobilenet_base(
net,
conv_defs=mobilenet_v2.V2_DEF,
multiplier=depth_multiplier,
final_endpoint=final_endpoint or _MOBILENET_V2_FINAL_ENDPOINT,
output_stride=output_stride,
scope=scope)
# A map from network name to network function.
networks_map = {
# 'mobilenet_v2': _mobilenet_v2,
'xception_65': xception.xception_65,
}
# A map from network name to network arg scope.
arg_scopes_map = {
# 'mobilenet_v2': mobilenet_v2.training_scope,
'xception_65': xception.xception_arg_scope,
}
# Names for end point features.
DECODER_END_POINTS = 'decoder_end_points'
# A dictionary from network name to a map of end point features.
networks_to_feature_maps = {
'mobilenet_v2': {
# The provided checkpoint does not include decoder module.
DECODER_END_POINTS: None,
},
'xception_65': {
DECODER_END_POINTS: [
'entry_flow/block2/unit_1/xception_module/'
'separable_conv2_pointwise',
],
}
}
# A map from feature extractor name to the network name scope used in the
# ImageNet pretrained versions of these models.
name_scope = {
'mobilenet_v2': 'MobilenetV2',
'xception_65': 'xception_65',
}
# Mean pixel value.
_MEAN_RGB = [123.15, 115.90, 103.06]
def _preprocess_subtract_imagenet_mean(inputs):
"""Subtract Imagenet mean RGB value."""
mean_rgb = tf.reshape(_MEAN_RGB, [1, 1, 1, 3])
return inputs - mean_rgb
def _preprocess_zero_mean_unit_range(inputs):
"""Map image values from [0, 255] to [-1, 1]."""
return (2.0 / 255.0) * tf.to_float(inputs) - 1.0
_PREPROCESS_FN = {
'mobilenet_v2': _preprocess_zero_mean_unit_range,
'xception_65': _preprocess_zero_mean_unit_range,
}
def mean_pixel(model_variant=None):
"""Gets mean pixel value.
This function returns different mean pixel value, depending on the input
model_variant which adopts different preprocessing functions. We currently
handle the following preprocessing functions:
(1) _preprocess_subtract_imagenet_mean. We simply return mean pixel value.
(2) _preprocess_zero_mean_unit_range. We return [127.5, 127.5, 127.5].
The return values are used in a way that the padded regions after
pre-processing will contain value 0.
Args:
model_variant: Model variant (string) for feature extraction. For
backwards compatibility, model_variant=None returns _MEAN_RGB.
Returns:
Mean pixel value.
"""
if model_variant is None:
return _MEAN_RGB
else:
return [127.5, 127.5, 127.5]
def extract_features(images,
output_stride=8,
multi_grid=None,
depth_multiplier=1.0,
final_endpoint=None,
model_variant=None,
weight_decay=0.0001,
reuse=None,
is_training=False,
fine_tune_batch_norm=False,
regularize_depthwise=False,
preprocess_images=True,
num_classes=None,
global_pool=False):
"""Extracts features by the particular model_variant.
Args:
images: A tensor of size [batch, height, width, channels].
output_stride: The ratio of input to output spatial resolution.
multi_grid: Employ a hierarchy of different atrous rates within network.
depth_multiplier: Float multiplier for the depth (number of channels)
for all convolution ops used in MobileNet.
final_endpoint: The MobileNet endpoint to construct the network up to.
model_variant: Model variant for feature extraction.
weight_decay: The weight decay for model variables.
reuse: Reuse the model variables or not.
is_training: Is training or not.
fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
regularize_depthwise: Whether or not apply L2-norm regularization on the
depthwise convolution weights.
preprocess_images: Performs preprocessing on images or not. Defaults to
True. Set to False if preprocessing will be done by other functions. We
supprot two types of preprocessing: (1) Mean pixel substraction and (2)
Pixel values normalization to be [-1, 1].
num_classes: Number of classes for image classification task. Defaults
to None for dense prediction tasks.
global_pool: Global pooling for image classification task. Defaults to
False, since dense prediction tasks do not use this.
Returns:
features: A tensor of size [batch, feature_height, feature_width,
feature_channels], where feature_height/feature_width are determined
by the images height/width and output_stride.
end_points: A dictionary from components of the network to the corresponding
activation.
Raises:
ValueError: Unrecognized model variant.
"""
if 'xception' in model_variant:
arg_scope = arg_scopes_map[model_variant](
weight_decay=weight_decay,
batch_norm_decay=0.9997,
batch_norm_epsilon=1e-3,
batch_norm_scale=True,
regularize_depthwise=regularize_depthwise)
features, end_points = get_network(
model_variant, preprocess_images, arg_scope)(
inputs=images,
num_classes=num_classes,
is_training=(is_training and fine_tune_batch_norm),
global_pool=global_pool,
output_stride=output_stride,
regularize_depthwise=regularize_depthwise,
multi_grid=multi_grid,
reuse=reuse,
scope=name_scope[model_variant])
elif 'mobilenet' in model_variant:
arg_scope = arg_scopes_map[model_variant](
is_training=(is_training and fine_tune_batch_norm),
weight_decay=weight_decay)
features, end_points = get_network(
model_variant, preprocess_images, arg_scope)(
inputs=images,
depth_multiplier=depth_multiplier,
output_stride=output_stride,
reuse=reuse,
scope=name_scope[model_variant],
final_endpoint=final_endpoint)
else:
raise ValueError('Unknown model variant %s.' % model_variant)
return features, end_points
def get_network(network_name, preprocess_images, arg_scope=None):
"""Gets the network.
Args:
network_name: Network name.
preprocess_images: Preprocesses the images or not.
arg_scope: Optional, arg_scope to build the network. If not provided the
default arg_scope of the network would be used.
Returns:
A network function that is used to extract features.
Raises:
ValueError: network is not supported.
"""
if network_name not in networks_map:
raise ValueError('Unsupported network %s.' % network_name)
arg_scope = arg_scope or arg_scopes_map[network_name]()
def _identity_function(inputs):
return inputs
if preprocess_images:
preprocess_function = _PREPROCESS_FN[network_name]
else:
preprocess_function = _identity_function
func = networks_map[network_name]
@functools.wraps(func)
def network_fn(inputs, *args, **kwargs):
with slim.arg_scope(arg_scope):
return func(preprocess_function(inputs), *args, **kwargs)
return network_fn