forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_all_pipeline.py
194 lines (164 loc) · 4.95 KB
/
test_all_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import sys
import shutil
import unittest
from pathlib import Path
import numpy as np
import pandas as pd
import qlib
from qlib.config import REG_CN, C
from qlib.utils import drop_nan_by_y_index
from qlib.contrib.model.gbdt import LGBModel
from qlib.contrib.data.handler import Alpha158
from qlib.contrib.strategy.strategy import TopkDropoutStrategy
from qlib.contrib.evaluate import (
backtest as normal_backtest,
risk_analysis,
)
from qlib.utils import exists_qlib_data, init_instance_by_config, flatten_dict
from qlib.workflow import R
from qlib.workflow.record_temp import SignalRecord, SigAnaRecord, PortAnaRecord
from qlib.tests.data import GetData
from qlib.tests import TestAutoData
market = "csi300"
benchmark = "SH000300"
###################################
# train model
###################################
data_handler_config = {
"start_time": "2008-01-01",
"end_time": "2020-08-01",
"fit_start_time": "2008-01-01",
"fit_end_time": "2014-12-31",
"instruments": market,
}
task = {
"model": {
"class": "LGBModel",
"module_path": "qlib.contrib.model.gbdt",
"kwargs": {
"loss": "mse",
"colsample_bytree": 0.8879,
"learning_rate": 0.0421,
"subsample": 0.8789,
"lambda_l1": 205.6999,
"lambda_l2": 580.9768,
"max_depth": 8,
"num_leaves": 210,
"num_threads": 20,
},
},
"dataset": {
"class": "DatasetH",
"module_path": "qlib.data.dataset",
"kwargs": {
"handler": {
"class": "Alpha158",
"module_path": "qlib.contrib.data.handler",
"kwargs": data_handler_config,
},
"segments": {
"train": ("2008-01-01", "2014-12-31"),
"valid": ("2015-01-01", "2016-12-31"),
"test": ("2017-01-01", "2020-08-01"),
},
},
},
}
port_analysis_config = {
"strategy": {
"class": "TopkDropoutStrategy",
"module_path": "qlib.contrib.strategy.strategy",
"kwargs": {
"topk": 50,
"n_drop": 5,
},
},
"backtest": {
"verbose": False,
"limit_threshold": 0.095,
"account": 100000000,
"benchmark": benchmark,
"deal_price": "close",
"open_cost": 0.0005,
"close_cost": 0.0015,
"min_cost": 5,
},
}
# train
def train():
"""train model
Returns
-------
pred_score: pandas.DataFrame
predict scores
performance: dict
model performance
"""
# model initiaiton
model = init_instance_by_config(task["model"])
dataset = init_instance_by_config(task["dataset"])
# start exp
with R.start(experiment_name="workflow"):
R.log_params(**flatten_dict(task))
model.fit(dataset)
# prediction
recorder = R.get_recorder()
rid = recorder.id
sr = SignalRecord(model, dataset, recorder)
sr.generate()
pred_score = sr.load()
# calculate ic and ric
sar = SigAnaRecord(recorder)
sar.generate()
ic = sar.load(sar.get_path("ic.pkl"))
ric = sar.load(sar.get_path("ric.pkl"))
return pred_score, {"ic": ic, "ric": ric}, rid
def backtest_analysis(pred, rid):
"""backtest and analysis
Parameters
----------
pred : pandas.DataFrame
predict scores
rid : str
the id of the recorder to be used in this function
Returns
-------
analysis : pandas.DataFrame
the analysis result
"""
recorder = R.get_recorder(experiment_name="workflow", recorder_id=rid)
# backtest
par = PortAnaRecord(recorder, port_analysis_config)
par.generate()
analysis_df = par.load(par.get_path("port_analysis.pkl"))
print(analysis_df)
return analysis_df
class TestAllFlow(TestAutoData):
PRED_SCORE = None
REPORT_NORMAL = None
POSITIONS = None
RID = None
@classmethod
def tearDownClass(cls) -> None:
shutil.rmtree(str(Path(C["exp_manager"]["kwargs"]["uri"].strip("file:")).resolve()))
def test_0_train(self):
TestAllFlow.PRED_SCORE, ic_ric, TestAllFlow.RID = train()
self.assertGreaterEqual(ic_ric["ic"].all(), 0, "train failed")
self.assertGreaterEqual(ic_ric["ric"].all(), 0, "train failed")
def test_1_backtest(self):
analyze_df = backtest_analysis(TestAllFlow.PRED_SCORE, TestAllFlow.RID)
self.assertGreaterEqual(
analyze_df.loc(axis=0)["excess_return_with_cost", "annualized_return"].values[0],
0.10,
"backtest failed",
)
def suite():
_suite = unittest.TestSuite()
_suite.addTest(TestAllFlow("test_0_train"))
_suite.addTest(TestAllFlow("test_1_backtest"))
return _suite
if __name__ == "__main__":
runner = unittest.TextTestRunner()
runner.run(suite())