-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
135 lines (123 loc) · 5.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import reader
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from Fishnet import FishNets
from alexnet_1 import alexnet
# import matplotlib.pyplot as plt
num_epoch = 10
num_classify = 6
learning_rate = 0.001
save_model="./tmp/train_model.ckpt"
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def onehot(label):
n_sample=len(label)
# n_class=max(label)+1
onehot_labels=np.zeros((n_sample,num_classify))
onehot_labels[np.arange(n_sample),label]=1
return onehot_labels
# with tf.name_scope("accuracy"):
with tf.Graph().as_default(),tf.device("/cpu:0"):
x = tf.placeholder(tf.float32, shape=[None, 224, 224, 3])
y = tf.placeholder(tf.float32, shape=[None, 6])
global_step = tf.get_variable('global_variable', initializer=tf.constant(0),trainable=False)
tower_grads = []
losses=[]
network_planes = [64, 128, 256, 512, 512, 512, 384, 256, 320, 832, 1600]
num_res_blks = [2, 2, 6, 2, 1, 1, 1, 1, 2, 2]
num_trans_blks = [1, 1, 1, 1, 1, 4]
# optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
with tf.variable_scope(tf.get_variable_scope()):
# with tf.device("/gpu:0"):
# fc3 = alexnet(x, num_classify)
with tf.name_scope("name",) as scope:
# value=alexnet(x,6)
mode=FishNets(num_classify,network_planes,num_res_blks,num_trans_blks)
value=mode(x,training= False)
a=tf.arg_max(value,1)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=value, labels=y))
# # train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
# tf.get_variable_scope().reuse_variables()
# summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
# gradient = optimizer.compute_gradients(loss)
# tower_grads.append(gradient)
# grads = average_gradients(tower_grads)
# for grad, var in grads:
# if grad is not None:
# summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))
#
# train_op = optimizer.apply_gradients(grads,global_step=global_step)
accuracy = tf.equal((tf.argmax(value, 1),),
tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(accuracy, tf.float32))
saver = tf.train.Saver()
# summary_op = tf.summary.merge(summaries)
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False))
print("begin")
TRAIN_FILE = "./Classify.tfrecords"
read=reader.Reader(TRAIN_FILE,batch_size=24)
image_dataset,label_dataset=read.feed()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
saver.restore(sess,"./tmp/train_model.ckpt")
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord=coord)
# summary_writer = tf.summary.FileWriter("./log", sess.graph)
for step in range(12000):# 83个epoch
batch_label,batch_image=sess.run([label_dataset,image_dataset])
if step % 1==0:
print(batch_label)
batch_label = onehot(batch_label)
values, accu, los = sess.run([ a, accuracy, loss], feed_dict={
x: batch_image, y: batch_label})
# values,optimize, accu, los = sess.run([a,train_op, accuracy, loss], feed_dict={
#
# x: batch_image, y: batch_label})
# summary_writer.add_summary(summary_str, step)
if step %1==0:
#summary_str=sess.run(summary_op,feed_dict={
# x: batch_image, y: batch_label})
# summary_writer.add_summary(summary_str, step)
print(" %d 准确率为%f 损失为%f " % (step,accu,los))
print(values)
if step % 100==0:
saver.save(sess,save_model)
coord.request_stop()
coord.join(threads)
plt.plot(losses)
plt.xlabel('iter')
plt.ylabel('loss')
plt.tight_layout()
plt.savefig('./cnn-tf-AlexNet.png',dpi=200)