forked from SmirkCao/Lihang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnb.py
executable file
·56 lines (46 loc) · 1.56 KB
/
nb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# -*-coding:utf-8-*-
# Project: Lihang
# Filename: nb
# Date: 8/16/18
# Author: 😏 <smirk dot cao at gmail dot com>
import numpy as np
import pandas as pd
import argparse
import logging
class NB(object):
def __init__(self,
lambda_):
self.lambda_ = lambda_
self.classes_ = None
self.prior_ = None
self.class_prior_ = None
self.class_count_ = None
def fit(self, X, y):
self.classes_ = np.unique(y)
# to df
X = pd.DataFrame(X)
y = pd.DataFrame(y)
self.class_count_ = y[y.columns[0]].value_counts()
self.class_prior_ = self.class_count_/y.shape[0]
# prior
self.prior_ = dict()
for idx in X.columns:
for j in self.classes_:
p_x_y = X[(y == j).values][idx].value_counts()
for i in p_x_y.index:
self.prior_[(idx, i, j)] = p_x_y[i]/self.class_count_[j]
def predict(self, X):
rst = []
for class_ in self.classes_:
py = self.class_prior_[class_]
pxy = 1
for idx, x in enumerate(X):
pxy *= self.prior_[(idx, x, class_)]
rst.append(py*pxy)
return self.classes_[np.argmax(rst)]
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--path", required=False, help="path to input data file")
args = vars(ap.parse_args())