forked from cmp-nct/ggllm.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
libfalcon.h
354 lines (283 loc) · 18.2 KB
/
libfalcon.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#ifndef FALCON_H
#define FALCON_H
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <string>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAMA_API __declspec(dllexport)
# else
# define LLAMA_API __declspec(dllimport)
# endif
# else
# define LLAMA_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAMA_API
#endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define FALCON_FILE_MAGIC_GGCC 0x67676363u // 'ggcc' (cmp-cnt enhancements for ggllm.cpp)
#define LLAMA_FILE_VERSION FALCON_FILE_VERSION_GGCC_V1
#define LLAMA_FILE_MAGIC FALCON_FILE_MAGIC_GGCC
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifdef __cplusplus
extern "C" {
#endif
//
// C interface
//
// TODO: show sample usage
//
struct falcon_context;
struct falcon_model;
struct falcon_vocab;
typedef int falcon_token;
typedef struct falcon_token_data {
falcon_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
} falcon_token_data;
typedef struct falcon_token_data_array {
falcon_token_data * data;
size_t size;
bool sorted;
} falcon_token_data_array;
typedef void (*falcon_progress_callback)(float progress, void *ctx, const char *status);
struct falcon_evaluation_config {
// mandatory configuration
int n_tokens = 1; // number of tokens to process
int n_past = 0; // number of tokens in kv cache past
int n_threads = 1; // number of threads available
// optional
const char *cgraph_fname = nullptr; // path to the cgraph export file
int n_max_real_ctx = 0; // the actual max achievable context given all parameters (-c, -n, -enc, -sys)
// debug related
int debug_timings = 0; // 0 (none), 1(first token), 2(first,last), 3(every token)
};
struct falcon_context_params {
int n_ctx; // text context
int n_batch; // prompt processing batch size
int n_gpu_layers; // number of layers to store in VRAM
int i_gpu_start; // first gpu layer
int i_gpu_last; // last gpu layer
int main_gpu; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
int seed; // RNG seed, -1 for random
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
// called with a progress value between 0 and 1, pass NULL to disable
falcon_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params;
LLAMA_API struct falcon_context_params falcon_context_default_params();
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend
// Call once at the start of the program
LLAMA_API void falcon_init_backend();
LLAMA_API int64_t llama_time_us();
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API struct falcon_context * falcon_init_from_file(
const char * path_model,
struct falcon_context_params params
);
// prepare scratch and computation buffers
LLAMA_API void falcon_context_set_buffers(falcon_context *ctx, int n_batch, int n_ctx);
LLAMA_API struct falcon_model * falcon_get_falcon_model(falcon_context * ctx);
// Frees all allocated memory
LLAMA_API void llama_free(struct falcon_context * ctx);
// Returns 0 on success
LLAMA_API int falcon_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API int llama_apply_lora_from_file(
struct falcon_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(const struct falcon_context * ctx);
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed(struct falcon_context * ctx, int seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size(const struct falcon_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t falcon_copy_state_data(struct falcon_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t falcon_set_state_data(struct falcon_context * ctx, uint8_t * src);
// Save/load session file
LLAMA_API bool llama_load_session_file(struct falcon_context * ctx, const char * path_session, falcon_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_API bool llama_save_session_file(struct falcon_context * ctx, const char * path_session, const falcon_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_API int falcon_eval(
struct falcon_context * ctx,
const falcon_token * tokens,
falcon_evaluation_config & configuration);
// Export a static computation graph for context of 511 and batch size of 1
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
// parameters here to keep things simple
// IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_API int falcon_eval_export(struct falcon_context * ctx, const char * fname);
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int falcon_tokenize(
struct falcon_context * ctx,
const char * text,
falcon_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int falcon_n_vocab(const struct falcon_context * ctx);
LLAMA_API int falcon_n_ctx (const struct falcon_context * ctx);
LLAMA_API int falcon_n_embd (const struct falcon_context * ctx);
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_API int falcon_get_vocab(
const struct falcon_context * ctx,
const char * * strings,
float * scores,
int capacity);
// prepares a falcon_context based on a model, also allocates scratch buffers based on parameters
LLAMA_API struct falcon_context * falcon_context_prepare(falcon_context_params params, falcon_model *model, std::string context_name, bool verbose);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * falcon_get_logits(struct falcon_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * falcon_get_embeddings(struct falcon_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * falcon_token_to_str(const struct falcon_context * ctx, falcon_token token);
typedef enum { FINETUNE_UNSPECIFIED, FINETUNE_NONE, FINETUNE_ALPACA, FINETUNE_OPENASSISTANT, FINETUNE_OPENASSIST_V1, FINETUNE_WIZARD, FINETUNE_FALCONINSTRUCT } t_finetune_type;
static const char *FINETUNE_NAME[7] = { "UNSPECIFIED", "NONE", "ALPACA", "OPENASSISTANT", "OPENASSIST_V1", "WIZARD", "FALCONINSTRUCT" };
LLAMA_API t_finetune_type falcon_detect_finetune(falcon_context * ctx, std::string model_path);
// Special tokens
LLAMA_API falcon_token falcon_token_bos();
LLAMA_API falcon_token falcon_token_eos();
LLAMA_API falcon_token falcon_token_nl();
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct falcon_context * ctx, falcon_token_data_array * candidates, const falcon_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct falcon_context * ctx, falcon_token_data_array * candidates, const falcon_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct falcon_context * ctx, falcon_token_data_array * candidates);
// logarithmic scaled softmax (just a log after softmax)
LLAMA_API void llama_sample_log_softmax(struct falcon_context * ctx, falcon_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(struct falcon_context * ctx, falcon_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(struct falcon_context * ctx, falcon_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(struct falcon_context * ctx, falcon_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(struct falcon_context * ctx, falcon_token_data_array * candidates, float p, size_t min_keep);
LLAMA_API void llama_sample_temperature(struct falcon_context * ctx, falcon_token_data_array * candidates, float temp);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `falcon_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API falcon_token llama_sample_token_mirostat(struct falcon_context * ctx, falcon_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `falcon_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API falcon_token llama_sample_token_mirostat_v2(struct falcon_context * ctx, falcon_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_API falcon_token llama_sample_token_greedy(struct falcon_context * ctx, falcon_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API falcon_token llama_sample_token(struct falcon_context * ctx, falcon_token_data_array * candidates);
// Performance information
LLAMA_API void falcon_print_timings(struct falcon_context * ctx);
LLAMA_API void llama_reset_timings(struct falcon_context * ctx);
// Print system information
LLAMA_API const char * falcon_print_system_info(int n_threads, int n_cores);
#ifdef __cplusplus
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <vector>
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct falcon_context * ctx);
#endif
#endif