Skip to content

A quick view of high-performance convolution neural networks (CNNs) inference engines on mobile devices.

Notifications You must be signed in to change notification settings

CAS-CLab/CNN-Inference-Engine-Quick-View

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 

Repository files navigation

CNN-Inference-Engine-Quick-View

A quick view of high-performance convolution neural networks (CNNs) inference engines on mobile devices.

Runtime-speed Comparisons

FLOAT32-Support

Framework Main Platform Model Compatibility Detection-Support Speed Benchmarks
Intel-Caffe CPU (Intel optimized) Caffe Y Link
NCNN CPU (ARM optimized) Caffe / pytorch / mxnet / onnx Y Link / unofficial Link
FeatherCNN CPU (ARM optimized) Caffe N Link / unofficial Link
FeatherCNNEx CPU (ARM optimized) Caffe N Link
Tengine CPU (ARM A72 optimized) Caffe / mxnet Y Link
Tensorflowlite CPU (Android optimized) Caffe2 / Tensorflow / onnx Y Link
TensorRT GPU (Volta optimized) Caffe / Tensorflow / onnx Y Link
TVM CPU (ARM optimized) / Mali GPU / FPGA onnx Y -
SNPE CPU (Qualcomm optimized) / GPU / DSP Caffe / Caffe2 / Tensorflow/ onnx Y Link
MACE CPU (ARM optimized) / Mali GPU / DSP Caffe / Tensorflow / onnx Y Link
Easy-MACE CPU (ARM optimized) / CPU (x86 optimized) Caffe / Tensorflow / onnx Y -
In-Prestissimo CPU (ARM optimized) Caffe N Link
Paddle-Mobile CPU (ARM optimized) / Mali GPU / FPGA Paddle / Caffe / onnx Y -
Anakin CPU (ARM optimized) / GPU / CPU (x86 optimized) Caffe / Fluid Y Link
Pocket-Tensor CPU (ARM/x86 optimized) Keras N Link
ZQCNN CPU Caffe / mxnet Y Link
ARM-NEON-to-x86-SSE CPU (Intel optimized) Intrinsics-Level - -
Simd CPU (all platform optimized) Intrinsics-Level - -
clDNN Intel® Processor Graphics / Iris™ Pro Graphics Caffe / Tennsorflow / mxnet / onnx Y Link

FIX16-Support

Framework Main Platform Model Compatibility Detection-Support Speed Benchmarks
FeatherCNNEx CPU (ARM optimized) Caffe N Link
ARM32-SGEMM-LIB CPU (ARM optimized) GEMM Library N Link
Yolov2-Xilinx-PYNQ FPGA (Xilinx PYNQ) Yolov2-only Y Link

INT8-Support

Framework Main Platform Model Compatibility Detection-Support Speed Benchmarks
Intel-Caffe CPU (Intel Skylake) Caffe Y Link
NCNN CPU (ARM) Caffe / pytorch / mxnet / onnx Y Link
Tensorflowlite CPU (Android) Caffe2 / Tensorflow / onnx Y Link
TensorRT GPU (Volta) Caffe / Tensorflow / onnx Y Link
Gemmlowp CPU (ARM / x86) GEMM Library - -
SNPE DSP (Quantized DLC) Caffe / Caffe2 / Tensorflow/ onnx Y Link
MACE CPU (ARM optimized) / Mali GPU / DSP Caffe / Tensorflow / onnx Y Link
In-Prestissimo CPU (ARM optimized) Caffe N Link
Paddle-Mobile CPU (ARM optimized) / Mali GPU / FPGA Paddle / Caffe / onnx Y -
Anakin CPU (ARM optimized) / GPU / CPU (x86 optimized) Caffe / Fluid Y Link

TERNARY-Support

Framework Main Platform Model Compatibility Detection-Support Speed Benchmarks
Gemmbitserial CPU (ARM / x86) GEMM Library - Link

BINARY-Support

Framework Main Platform Model Compatibility Detection-Support Speed Benchmarks
BMXNET CPU (ARM / x86) / GPU mxnet Y Link
Espresso GPU - N Link
BNN-PYNQ FPGA (Xilinx PYNQ) - N Link
FINN FPGA (Xilinx) - N Link

MobileNet-v1 Speed Benchmarks on RK3399

Rockchip RK3399 (Cortex-A72 1.8GHz x 2 + Cortex-A53 1.5GHz x 4):

Framework (ms) 1 Thread 2 Threads 3 Threads 4 Threads
Caffe+OpenBLAS* 250.57 204.40 248.65 230.20
FeatherCNN 205.76 135.17 183.34 194.67
NCNN** 150.95 90.79 232.31 231.64
NCNN-Opt 122.22 67.47 - -
Tengine 122.10 65.42 - -
Tengine-Opt 115.29 63.94 - -

*: optimized for Cortex-A53 instead of Cortex-A72

**: powersave=0

For 1 Thread, we set task on a single A72, and A72 x 2 for 2 Threads.

ResNet-18 Speed Benchmarks on RK3399

Framework (ms) 1 Thread 2 Threads 8 Threads
NCNN* 340.33 211.78 -
NCNN-Opt 332.20 206.62 196.97
Tengine 402.57 226.02 -

*: Conv-BN-Scale-fused

About

A quick view of high-performance convolution neural networks (CNNs) inference engines on mobile devices.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published