-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetalex_parser.py
236 lines (179 loc) · 9.72 KB
/
metalex_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# -*- coding: utf-8 -*-
'''
Created on 8 Jun 2011
@author: hoekstra
'''
from nltk.tokenize.regexp import RegexpTokenizer
# from nltk.corpus import alpino
from nltk.tag import brill
from nltk.tag import RegexpTagger
from nltk.corpus import conll2002
import nltk
import pickle
import os.path
from types import StringType
import regex
from util import Util
class Parser():
def __init__(self):
if not os.path.isfile('tagger.pickle') :
print "Training tagger..."
# train_sents = alpino.tagged_sents()
train_sents = conll2002.tagged_sents('ned.train')
# train_sents = conll2002.chunked_sents('ned.train')
word_patterns = [ (r'\d+\.\d+\w?', 'Ref'),
(r'\d+\:\d+\w?', 'Ref'),
(r'\d+\w', 'Ref'),
(r'\d+/\d+/eg', 'Ref'),
(r'^(18|19|20)\d\d$', 'Year'),
(r'(de|het|een)', 'Art'),
(r'(en|of)', 'EnOf'),
(r'^\d+', 'Index'),
(r'^\w+\.$', 'Index'),
(r'^\d+(\D|\S|\W)(\.)?$', 'DegIndex'),
(r'^\w$', 'Ref'),
(r'^;$', 'Punc'),
(r'^[a-zA-Z]+\d+$','Ref'),
(r'^\w\w+$', 'N') ]
raubt_tagger = self.backoff_tagger(train_sents, [nltk.tag.AffixTagger,
nltk.tag.UnigramTagger, nltk.tag.BigramTagger, nltk.tag.TrigramTagger],
backoff=RegexpTagger(word_patterns))
templates = [
brill.SymmetricProximateTokensTemplate(brill.ProximateTagsRule, (1,1)),
brill.SymmetricProximateTokensTemplate(brill.ProximateTagsRule, (2,2)),
brill.SymmetricProximateTokensTemplate(brill.ProximateTagsRule, (1,2)),
brill.SymmetricProximateTokensTemplate(brill.ProximateTagsRule, (1,3)),
brill.SymmetricProximateTokensTemplate(brill.ProximateWordsRule, (1,1)),
brill.SymmetricProximateTokensTemplate(brill.ProximateWordsRule, (2,2)),
brill.SymmetricProximateTokensTemplate(brill.ProximateWordsRule, (1,2)),
brill.SymmetricProximateTokensTemplate(brill.ProximateWordsRule, (1,3)),
brill.ProximateTokensTemplate(brill.ProximateTagsRule, (-1, -1), (1,1)),
brill.ProximateTokensTemplate(brill.ProximateWordsRule, (-1, -1), (1,1))
]
trainer = brill.FastBrillTaggerTrainer(raubt_tagger, templates)
braubt_tagger = trainer.train(train_sents, max_rules=100, min_score=3)
self.trained_tagger = braubt_tagger
pickle.dump(self.trained_tagger, open('tagger.pickle','w'))
print "Dumped tagger to file"
else :
self.trained_tagger = pickle.load(open('tagger.pickle', 'r'))
print "Loaded tagger from file"
def backoff_tagger(self, tagged_sents, tagger_classes, backoff=None):
if not backoff:
backoff = tagger_classes[0](tagged_sents)
del tagger_classes[0]
for cls in tagger_classes:
tagger = cls(tagged_sents, backoff=backoff)
backoff = tagger
return backoff
def tokenizeText(self, text):
ret = RegexpTokenizer(u"(\d+\u00B0(\.)?)|(nr\.)|(\d+/\d+/eg)|(\d+\:\d+\w*)|(\d+\.\d+\w*)+|[\w\d]+|(\s\w\.)|(\.)|\,|\t|[^ \t\n\r\f\v\w\d]")
tokens = ret.tokenize(text)
ntokens = []
sentence = []
i = -1
for t in tokens[:-1] :
i += 1
if type(t) is StringType:
t = t.decode('UTF-8')
if (t.istitle() and tokens[i-1] == '.') or (regex.search(r'^\d+',t) and tokens[i+1].istitle()):
ntokens.append(sentence)
sentence = [t.lower().strip()]
else :
sentence.append(t.lower().strip())
sentence.append(tokens[-1].lower().strip())
ntokens.append(sentence)
return ntokens
def tagText(self, ntokens):
ntagged = []
if len(ntokens) > 1:
sentences = ntokens[1:]
else :
sentences = ntokens
for s in sentences :
tagged = self.trained_tagger.tag(s)
normalized_tagged = []
for (w,t) in tagged :
if t == None :
t = 'none'
if regex.search(r'^[a-zA-Z]$',w) :
# print "Replaced", w
normalized_tagged.append((w,u'Ref'))
elif regex.search(r'^[a-zA-Z]\.$',w) :
# print "Replaced", w
normalized_tagged.append((w,u'Index'))
elif regex.search(r'\d+\u00B0(\.)?',w) :
normalized_tagged.append((w,u'DegIndex'))
elif regex.search(r'\(|\)',w) :
normalized_tagged.append((w,u'Bracket'))
elif regex.search(r'(18|19|20)\d\d',w) :
normalized_tagged.append((w,u'Year'))
elif regex.search(r'^\d+$',w) :
normalized_tagged.append((w,u'Ref'))
elif regex.search(r'^�$',w) :
print "Removed", w
# ns.append((w,u'Index'))
elif regex.search(r'^\-$', w) :
normalized_tagged.append((w,u'Koppel'))
elif regex.search(r'^het$', w) :
normalized_tagged.append((w,u'Art'))
elif regex.search(r'^(en|of|onderscheidenlijk)$', w) :
normalized_tagged.append((w,u'EnOf'))
elif regex.search(r'^ten$', w) :
normalized_tagged.append((w,u'Ten'))
elif regex.search(r'^van$', w) :
normalized_tagged.append((w,u'Van'))
elif regex.search(r'^der$', w) :
normalized_tagged.append((w,u'Prep'))
elif regex.search(r'^nr.$', w) :
normalized_tagged.append((w,u'N'))
# 'laste' and 'koste' are nouns, but shouldn't be treated as such, cf. 'ten laste van' is not a NP
elif regex.search(r'^laste|koste|aanmerking|tijde|aanzien|voorzover$', w) :
normalized_tagged.append((w,u'None'))
elif regex.search(r'^krachtens$', w) :
normalized_tagged.append((w,u'Krachtens'))
elif regex.search(r'^aanspraken|liquidatiewaarde|persoonsgegevens|waardegegeven|ouder|verkregene|nabestaande|nabestaanden|eigenwoningschuld|overledene|nederlanden|begiftigden|begiftigde|erfgenamen|overledene|vermogensbestanddelen|goed|verkregene|rechtspersoon|mogendheden|schenker|verkrijger|registergoederen|bewijsstukken|overbedelingsschuld|geldsom|huwelijksvoorwaarden|eerststervende$', w) :
normalized_tagged.append((w,u'N'))
elif regex.search(r'^ingesloten|uitgaat|aansluit|vervreemdt$', w) :
normalized_tagged.append((w,u'V'))
elif regex.search(r'^ingeval|door$', w) :
normalized_tagged.append((w,u'Conj'))
elif regex.search(r'^één$', w) :
normalized_tagged.append((w,u'Num'))
elif regex.search(r'^waaromtrent$', w) :
normalized_tagged.append((w,u'Adv'))
elif regex.search(r'^indirect$', w) :
normalized_tagged.append((w,u'Adj'))
elif regex.search(r'^(wet|wetten|artikel|artikelen|hoofdstuk|hoofdstukken|boek|boeken|titeldeel|titeldelen|lid|titel|afdeling|onderdeel|volzin)$', w) :
normalized_tagged.append((w,u'Part'))
else :
normalized_tagged.append((w,t))
ntagged.append(normalized_tagged)
return ntagged
def parseText(self, ntagged):
# Deze drie de gele bloemen
# Alle drie deze artikelen 12
# standard_NP = "((<Art><Num>?<Adv>))?<Adj>*<V>*<N>+(<Adj>+<N>+)?(<Ref>|<Year>)?"
# standard_NP = "(<Art>|<Pron>(<Num><Art>|<Pron>)?)?<Adv>?<Adj>*<V>*(<Conj><V>*<Adj>*?)*(<N>|<none>)+(<Ref>|<Year>)?"
# prep_adj_V = "(<Prep><Adj>*<V><N>)"
# prep_V_connector = "((<V><Prep>?)|<Prep>)"
# grammar = r"NP: { ("+standard_NP + "((<Prep><Adj>*<V><N>)| ((<Pron><Prep><V><N>) | (<Pron><Prep><N><V><V>)))?)|(<Art><V><N>?)|(<N><Prep><N>) }\n REF: { <Num><N> }" # |(" + prep_V_connector + standard_NP + "))* }"
grammar = """
NREF: { (<Part><Ref|Index|DegIndex>((<Punc><Ref|Index|DegIndex>(<Punc><Num><Part>)?)|(<EnOf><Ref>(<Punc><Num><Part>)?))*)|(<Num><Part>) }
AV: { (<Art><Adj>*<V>((<Punc><Adj>*<V>)*<EnOf><Adj>*<V>)*<N>?) }
AN: { (<Adj>(<Punc|EnOf><Adj>)*)?<N|Part> }
AP: { <AN>(<AN>*(?!<Prep>?<V><Punc>))?<Ref|Year>? }
MAP: { (<Art><Pron>?<AP>) }
SAP: { <MAP|AV>(<Koppel>?<EnOf><AP|MAP|AV>)* }
SP: { <AP|AV>(<Koppel>?<EnOf><AP|AV>)* }
REF: {<NREF>(<Van><NREF>)*(<Van><SAP>)?}
NP: { <SAP|SP>((<Ten><SP><Van><SAP|SP>)|(<Krachtens><SAP|SP><Van><SAP|SP>)|(<Prep|Krachtens><SP>(?!<Adv>))|(<Van><Pron>?<SP|SAP|V>(<Prep|Krachtens><SP>)?))*(<Conj><V>(?!<Prep|EnOf|Art|Pron|V>))? }
"""
cp = nltk.RegexpParser(grammar)
# Alpino style
# cp = nltk.RegexpParser("NP: {<det><num>*<prep>*<adj>*(<noun>|<none>)+<num>*}")
nparsed = []
for s in ntagged :
ps = cp.parse(s)
nparsed.append(ps)
return nparsed