Skip to content

Latest commit

 

History

History
61 lines (39 loc) · 1.01 KB

README.md

File metadata and controls

61 lines (39 loc) · 1.01 KB

Integrating concept of pharmacophore with Graph Neural Networks for chemical property prediction and interpretation

This repository contains the source code and the data.

RG-MPNN

Setup and dependencies

Dependencies:

  • python 3.7
  • pytorch = 1.7.1
  • torch-cluster = 1.5.9
  • torch-geometric = 1.7.2
  • torch-scatter = 2.0.7
  • torch-sparse = 0.6.9
  • torch-spline-conv = 1.2.1
  • RDkit = 2021.03.3
  • numpy
  • pandas

Data sets

The data sets are provided as .csv files in a directory called 'data', including benchmark datasets and kinase datasets used in this work.


Using

1.MyNet_Classification generates input, train and test classification models. For example,

python MyNet_Classification.py \
    --epochs 100 \
    --dataset BACE \
    --model RGNN 

2.MyNet_Regression generates input, train and test regression models. For example,

python MyNet_Regression.py \
    --epochs 100 \
    --dataset Lipo \
    --model RGNN

Author

Yue Kong

Aixia Yan

Citation