-
Notifications
You must be signed in to change notification settings - Fork 1
/
resnet_cnn.py
121 lines (86 loc) · 3.57 KB
/
resnet_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# 2020.01.10-Replaced conv with adder
# Huawei Technologies Co., Ltd. <[email protected]>
from adder.adder_gai import Adder2D
import torch.nn as nn
from torchsummary import summary
def conv3x3(in_planes, out_planes, stride=(1, 1)):
" 3x3 convolution with padding "
return nn.Conv2d(in_planes, out_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=(1, 1), downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=6):
super(ResNet, self).__init__()
self.inplanes = 16
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 16, layers[0])
self.layer2 = self._make_layer(block, 32, layers[1], stride=(2, 2)) # change h
self.layer3 = self._make_layer(block, 64, layers[2], stride=(2, 2)) # change h
self.avgpool = nn.MaxPool2d(3, stride=1) # need transform
self.fc = nn.Conv2d(64 * block.expansion, num_classes, 1, bias=False)
self.bn2 = nn.BatchNorm2d(num_classes)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=(1, 1)):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=(1, 1), stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion)
)
layers = []
layers.append(block(inplanes=self.inplanes, planes=planes, stride=stride, downsample=downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(inplanes=self.inplanes, planes=planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.avgpool(x)
x = self.fc(x)
x = self.bn2(x)
return x.view(x.size(0), -1)
def resnet20(**kwargs):
return ResNet(BasicBlock, [3, 3, 3], **kwargs)
# net = resnet20().cuda()
#
# summary(net, (1, 128, 9))
def resnet32_CNN(**kwargs):
return ResNet(BasicBlock, [5, 5, 5], **kwargs)
# net = resnet32().cuda()
#
# summary(net, (1, 200, 3))
def resnet5(**kwargs):
return ResNet(BasicBlock, [1, 1, 1], **kwargs)
def resnet_test(**kwargs):
return ResNet(BasicBlock, [2, 3, 3], **kwargs)