forked from conceptofmind/PaLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_dataset.py
63 lines (54 loc) · 2.52 KB
/
build_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import multiprocessing
import argparse
from itertools import chain
from datasets import load_dataset
from transformers import AutoTokenizer
class CFG:
SEED: int = 42
SEQ_LEN: int = 8192
NUM_CPU: int = multiprocessing.cpu_count()
HF_ACCOUNT_REPO: str = "YOUR HF ACCOUNT"
TOKENIZER: str = "EleutherAI/gpt-neox-20b"
DATASET_NAME: str = "EleutherAI/the_pile_deduplicated"
def main(args):
tokenizer = AutoTokenizer.from_pretrained(CFG.TOKENIZER)
train_dataset = load_dataset(CFG.DATASET_NAME, split="train")
def tokenize_function(example):
return tokenizer([t + tokenizer.eos_token for t in example["text"]])
tokenized_dataset = train_dataset.map(
tokenize_function,
batched=True,
num_proc=CFG.NUM_CPU,
remove_columns=["text"],
)
block_size = CFG.SEQ_LEN
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
return result
train_tokenized_dataset = tokenized_dataset.map(
group_texts,
batched=True,
num_proc=CFG.NUM_CPU,
)
train_tokenized_dataset.push_to_hub(CFG.HF_ACCOUNT_REPO)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Process and push dataset to Hugging Face Hub")
parser.add_argument("--seed", type=int, default=CFG.SEED, help="Random seed")
parser.add_argument("--seq_len", type=int, default=CFG.SEQ_LEN, help="Sequence length for processing")
parser.add_argument("--hf_account", type=str, default=CFG.HF_ACCOUNT_REPO, help="Hugging Face account name and repo")
parser.add_argument("--tokenizer", type=str, default=CFG.TOKENIZER, help="Tokenizer model to use")
parser.add_argument("--dataset_name", type=str, default=CFG.DATASET_NAME, help="Name of the dataset to process")
args = parser.parse_args()
main(args)