-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsample_two.py
173 lines (127 loc) · 5.01 KB
/
sample_two.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import hydra
import math
from src.utils import DataProvider
from src.model import ModelBase
from diffusers.optimization import get_scheduler
import torch
from accelerate import Accelerator
from tqdm.auto import tqdm
from torch import nn
from pathlib import Path
import numpy as np
import torchvision.transforms.functional as TF
from accelerate.logging import get_logger
from PIL import Image
from functools import reduce
from src.utils import add_lora_from_config
# only used this for HED so far
torch.set_float32_matmul_precision("high")
def get_imgs_from_batch(batch: dict[str, torch.Tensor], is_video=False) -> torch.Tensor:
if is_video:
B, C, T, H, W = batch["sequence"].shape
batch_selector = torch.linspace(0, B - 1, B, dtype=torch.int)
frame_selector = torch.randint(0, T, (B,))
# imgs in [-1, 1]
imgs = batch["sequence"]
imgs = imgs[batch_selector, :, frame_selector]
return imgs
imgs = batch["jpg"]
return imgs
@hydra.main(config_path="configs", config_name="sample")
def main(cfg):
output_path = Path(hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
accelerator = Accelerator(
project_dir=output_path / "logs",
)
str_cfg = cfg
print(str_cfg)
cfg = hydra.utils.instantiate(cfg)
model: ModelBase = cfg.model
model = model.to(accelerator.device)
model.pipe.to(accelerator.device)
weight_type = torch.float32
if cfg.get("bf16", False):
weight_type = torch.bfloat16
cfg_mask = add_lora_from_config(model, cfg, accelerator.device, weight_type)
model.unet.to(accelerator.device, weight_type)
model = model.to(accelerator.device, weight_type)
model.pipe.to(accelerator.device, weight_type)
print(cfg_mask)
dm1 = cfg.data
val_dataloader1 = dm1.val_dataloader()
print(val_dataloader1)
val_dataloader2 = dm1.val_dataloader()
try:
dm2 = cfg.data2
val_dataloader2 = dm2.val_dataloader()
except:
print("no second dataloader provided")
logger = get_logger(__name__)
logger.info("==================================")
logger.info(str_cfg)
logger.info(output_path)
logger.info("prepare network")
val_dataloader1 = accelerator.prepare(val_dataloader1)
unet = model.unet
# model.unet = unet
unet.requires_grad_(False)
unet.eval()
images = []
val_prompts = []
for it, val_batch in enumerate(tqdm(val_dataloader1)):
if it < cfg.get("skip", 0):
continue
for ib, val_batch2 in enumerate(tqdm(val_dataloader2)):
generator = torch.Generator(device=accelerator.device).manual_seed(cfg.seed)
i = max(it, ib)
if cfg.get("prompt", None) is not None:
if len(cfg.prompt) > 1:
prompts = cfg.prompt
else:
prompts = [cfg.prompt]
else:
prompts = val_batch["caption"]
print(prompts)
val_prompts.append(prompts)
# B, C, T, H, W = batch["sequence"].shape
# imgs = get_imgs_from_batch(val_batch, cfg.get("is_video", False))
imgs = val_batch["jpg"]
imgs = imgs.to(accelerator.device, weight_type)
imgs = imgs.clip(-1.0, 1.0)
imgs2 = val_batch2["jpg"]
imgs2 = imgs2.to(accelerator.device, weight_type)
imgs2 = imgs2.clip(-1.0, 1.0)
cs = [imgs, imgs2]
pipeline_args = {
"prompt": prompts,
"num_images_per_prompt": cfg.n_samples,
"cs": cs,
"generator": generator,
"cfg_mask": cfg_mask,
# "prompt_offset_step": cfg.get("prompt_offset_step", 0),
}
preds = model.sample(**pipeline_args)
for j, pred in enumerate(preds):
pred.save(f"{accelerator.process_index}-img_{it}_{ib}_{j}_sample.jpg")
if cfg.get("save_grid", False):
if cfg.get("log_cond", False):
# depth is in [0, 1]
cond1 = (imgs + 1) / 2
cond2 = model.encoders[-1](imgs2)
log_pils = [TF.to_pil_image((torch.cat([c1, c2], dim=2)).float().cpu()) for c1, c2 in zip(cond1, cond2)]
else:
log_pils = [TF.to_pil_image((img.float().cpu() + 1) / 2) for img in imgs]
for j, log_pil in enumerate(log_pils):
log_pil.save(f"{accelerator.process_index}-img_{i}_{j}_prompt.jpg")
images.append(
np.concatenate(
# we know height is constant
[np.asarray(img.resize((int(cfg.size * img.width / img.height), cfg.size))) for img in [*log_pils, *preds]],
axis=1,
)
)
if cfg.get("save_grid", False):
np_images = np.concatenate(images, axis=0)
Image.fromarray(np_images).save("test.jpg")
if __name__ == "__main__":
main()