forked from lammps/lammps
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreaxff_nonbonded.cpp
407 lines (330 loc) · 13.9 KB
/
reaxff_nonbonded.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// clang-format off
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, [email protected]
Joseph Fogarty, [email protected]
Sagar Pandit, [email protected]
Ananth Y Grama, [email protected]
Please cite the related publication:
H. M. Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama,
"Parallel Reactive Molecular Dynamics: Numerical Methods and
Algorithmic Techniques", Parallel Computing, in press.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<https://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reaxff_api.h"
#include "pair.h"
#include <cmath>
namespace ReaxFF {
void Compute_Polarization_Energy(reax_system *system, simulation_data *data)
{
int i, type_i;
double q, en_tmp;
data->my_en.e_pol = 0.0;
for (i = 0; i < system->n; i++) {
type_i = system->my_atoms[i].type;
if (type_i < 0) continue;
q = system->my_atoms[i].q;
en_tmp = KCALpMOL_to_EV * (system->reax_param.sbp[type_i].chi * q +
(system->reax_param.sbp[type_i].eta / 2.) * SQR(q));
data->my_en.e_pol += en_tmp;
/* tally energy into global or per-atom energy accumulators */
if (system->pair_ptr->eflag_either)
system->pair_ptr->ev_tally(i,i,system->n,1,0.0,en_tmp,0.0,0.0,0.0,0.0);
}
}
void vdW_Coulomb_Energy(reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists)
{
int i, j, pj, natoms;
int start_i, end_i, flag;
rc_tagint orig_i, orig_j;
double p_vdW1, p_vdW1i;
double powr_vdW1, powgi_vdW1;
double tmp, r_ij, fn13, exp1, exp2;
double Tap, dTap, dfn13, CEvd, CEclmb, de_core;
double dr3gamij_1, dr3gamij_3;
double e_ele, e_vdW, e_core, SMALL = 0.0001;
double e_lg, de_lg, r_ij5, r_ij6, re6;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_list *far_nbrs;
// Tallying variables:
double pe_vdw, f_tmp, delij[3];
natoms = system->n;
far_nbrs = (*lists) + FAR_NBRS;
p_vdW1 = system->reax_param.gp.l[28];
p_vdW1i = 1.0 / p_vdW1;
e_core = 0;
e_vdW = 0;
e_lg = de_lg = 0.0;
for (i = 0; i < natoms; ++i) {
if (system->my_atoms[i].type < 0) continue;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
orig_i = system->my_atoms[i].orig_id;
for (pj = start_i; pj < end_i; ++pj) {
nbr_pj = &(far_nbrs->select.far_nbr_list[pj]);
j = nbr_pj->nbr;
if (system->my_atoms[j].type < 0) continue;
orig_j = system->my_atoms[j].orig_id;
flag = 0;
if (nbr_pj->d <= control->nonb_cut) {
if (j < natoms) flag = 1;
else if (orig_i < orig_j) flag = 1;
else if (orig_i == orig_j) {
if (nbr_pj->dvec[2] > SMALL) flag = 1;
else if (fabs(nbr_pj->dvec[2]) < SMALL) {
if (nbr_pj->dvec[1] > SMALL) flag = 1;
else if (fabs(nbr_pj->dvec[1]) < SMALL && nbr_pj->dvec[0] > SMALL)
flag = 1;
}
}
}
if (flag) {
r_ij = nbr_pj->d;
twbp = &(system->reax_param.tbp[system->my_atoms[i].type]
[system->my_atoms[j].type]);
Tap = workspace->Tap[7] * r_ij + workspace->Tap[6];
Tap = Tap * r_ij + workspace->Tap[5];
Tap = Tap * r_ij + workspace->Tap[4];
Tap = Tap * r_ij + workspace->Tap[3];
Tap = Tap * r_ij + workspace->Tap[2];
Tap = Tap * r_ij + workspace->Tap[1];
Tap = Tap * r_ij + workspace->Tap[0];
dTap = 7*workspace->Tap[7] * r_ij + 6*workspace->Tap[6];
dTap = dTap * r_ij + 5*workspace->Tap[5];
dTap = dTap * r_ij + 4*workspace->Tap[4];
dTap = dTap * r_ij + 3*workspace->Tap[3];
dTap = dTap * r_ij + 2*workspace->Tap[2];
dTap += workspace->Tap[1]/r_ij;
/*vdWaals Calculations*/
if (system->reax_param.gp.vdw_type==1 || system->reax_param.gp.vdw_type==3)
{ // shielding
powr_vdW1 = pow(r_ij, p_vdW1);
powgi_vdW1 = pow(1.0 / twbp->gamma_w, p_vdW1);
fn13 = pow(powr_vdW1 + powgi_vdW1, p_vdW1i);
exp1 = exp(twbp->alpha * (1.0 - fn13 / twbp->r_vdW));
exp2 = exp(0.5 * twbp->alpha * (1.0 - fn13 / twbp->r_vdW));
e_vdW = twbp->D * (exp1 - 2.0 * exp2);
data->my_en.e_vdW += Tap * e_vdW;
dfn13 = pow(powr_vdW1 + powgi_vdW1, p_vdW1i - 1.0) *
pow(r_ij, p_vdW1 - 2.0);
CEvd = dTap * e_vdW -
Tap * twbp->D * (twbp->alpha / twbp->r_vdW) * (exp1 - exp2) * dfn13;
} else { // no shielding
exp1 = exp(twbp->alpha * (1.0 - r_ij / twbp->r_vdW));
exp2 = exp(0.5 * twbp->alpha * (1.0 - r_ij / twbp->r_vdW));
e_vdW = twbp->D * (exp1 - 2.0 * exp2);
data->my_en.e_vdW += Tap * e_vdW;
CEvd = dTap * e_vdW -
Tap * twbp->D * (twbp->alpha / twbp->r_vdW) * (exp1 - exp2) / r_ij;
}
if (system->reax_param.gp.vdw_type==2 || system->reax_param.gp.vdw_type==3)
{ // inner wall
e_core = twbp->ecore * exp(twbp->acore * (1.0-(r_ij/twbp->rcore)));
data->my_en.e_vdW += Tap * e_core;
de_core = -(twbp->acore/twbp->rcore) * e_core;
CEvd += dTap * e_core + Tap * de_core / r_ij;
// lg correction, only if lgvdw is yes
if (control->lgflag) {
r_ij5 = pow(r_ij, 5.0);
r_ij6 = pow(r_ij, 6.0);
re6 = pow(twbp->lgre, 6.0);
e_lg = -(twbp->lgcij/(r_ij6 + re6));
data->my_en.e_vdW += Tap * e_lg;
de_lg = -6.0 * e_lg * r_ij5 / (r_ij6 + re6) ;
CEvd += dTap * e_lg + Tap * de_lg / r_ij;
}
}
/*Coulomb Calculations*/
dr3gamij_1 = (r_ij * r_ij * r_ij + twbp->gamma);
dr3gamij_3 = pow(dr3gamij_1 , 0.33333333333333);
tmp = Tap / dr3gamij_3;
data->my_en.e_ele += e_ele =
C_ele * system->my_atoms[i].q * system->my_atoms[j].q * tmp;
CEclmb = C_ele * system->my_atoms[i].q * system->my_atoms[j].q *
(dTap - Tap * r_ij / dr3gamij_1) / dr3gamij_3;
/* tally into per-atom energy */
if (system->pair_ptr->evflag) {
pe_vdw = Tap * (e_vdW + e_core + e_lg);
rvec_ScaledSum(delij, 1., system->my_atoms[i].x,
-1., system->my_atoms[j].x);
f_tmp = -(CEvd + CEclmb);
system->pair_ptr->ev_tally(i,j,natoms,1,pe_vdw,e_ele,
f_tmp,delij[0],delij[1],delij[2]);
}
rvec_ScaledAdd(workspace->f[i], -(CEvd + CEclmb), nbr_pj->dvec);
rvec_ScaledAdd(workspace->f[j], +(CEvd + CEclmb), nbr_pj->dvec);
}
}
}
Compute_Polarization_Energy(system, data);
}
void Tabulated_vdW_Coulomb_Energy(reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists)
{
int i, j, pj, r, natoms;
int type_i, type_j, tmin, tmax;
int start_i, end_i, flag;
rc_tagint orig_i, orig_j;
double r_ij, base, dif;
double e_vdW, e_ele;
double CEvd, CEclmb, SMALL = 0.0001;
double f_tmp, delij[3];
far_neighbor_data *nbr_pj;
reax_list *far_nbrs;
LR_lookup_table *t;
LR_lookup_table ** & LR = system->LR;
natoms = system->n;
far_nbrs = (*lists) + FAR_NBRS;
e_ele = e_vdW = 0;
for (i = 0; i < natoms; ++i) {
type_i = system->my_atoms[i].type;
if (type_i < 0) continue;
start_i = Start_Index(i,far_nbrs);
end_i = End_Index(i,far_nbrs);
orig_i = system->my_atoms[i].orig_id;
for (pj = start_i; pj < end_i; ++pj) {
nbr_pj = &(far_nbrs->select.far_nbr_list[pj]);
j = nbr_pj->nbr;
type_j = system->my_atoms[j].type;
if (type_j < 0) continue;
orig_j = system->my_atoms[j].orig_id;
flag = 0;
if (nbr_pj->d <= control->nonb_cut) {
if (j < natoms) flag = 1;
else if (orig_i < orig_j) flag = 1;
else if (orig_i == orig_j) {
if (nbr_pj->dvec[2] > SMALL) flag = 1;
else if (fabs(nbr_pj->dvec[2]) < SMALL) {
if (nbr_pj->dvec[1] > SMALL) flag = 1;
else if (fabs(nbr_pj->dvec[1]) < SMALL && nbr_pj->dvec[0] > SMALL)
flag = 1;
}
}
}
if (flag) {
r_ij = nbr_pj->d;
tmin = MIN(type_i, type_j);
tmax = MAX(type_i, type_j);
t = &(LR[tmin][tmax]);
/* Cubic Spline Interpolation */
r = (int)(r_ij * t->inv_dx);
if (r == 0) ++r;
base = (double)(r+1) * t->dx;
dif = r_ij - base;
e_vdW = ((t->vdW[r].d*dif + t->vdW[r].c)*dif + t->vdW[r].b)*dif +
t->vdW[r].a;
e_ele = ((t->ele[r].d*dif + t->ele[r].c)*dif + t->ele[r].b)*dif +
t->ele[r].a;
e_ele *= system->my_atoms[i].q * system->my_atoms[j].q;
data->my_en.e_vdW += e_vdW;
data->my_en.e_ele += e_ele;
CEvd = ((t->CEvd[r].d*dif + t->CEvd[r].c)*dif + t->CEvd[r].b)*dif +
t->CEvd[r].a;
CEclmb = ((t->CEclmb[r].d*dif+t->CEclmb[r].c)*dif+t->CEclmb[r].b)*dif +
t->CEclmb[r].a;
CEclmb *= system->my_atoms[i].q * system->my_atoms[j].q;
/* tally into per-atom energy */
if (system->pair_ptr->evflag) {
rvec_ScaledSum(delij, 1., system->my_atoms[i].x,
-1., system->my_atoms[j].x);
f_tmp = -(CEvd + CEclmb);
system->pair_ptr->ev_tally(i,j,natoms,1,e_vdW,e_ele,
f_tmp,delij[0],delij[1],delij[2]);
}
rvec_ScaledAdd(workspace->f[i], -(CEvd + CEclmb), nbr_pj->dvec);
rvec_ScaledAdd(workspace->f[j], +(CEvd + CEclmb), nbr_pj->dvec);
}
}
}
Compute_Polarization_Energy(system, data);
}
void LR_vdW_Coulomb(reax_system *system, storage *workspace,
control_params *control, int i, int j,
double r_ij, LR_data *lr)
{
double p_vdW1 = system->reax_param.gp.l[28];
double p_vdW1i = 1.0 / p_vdW1;
double powr_vdW1, powgi_vdW1;
double tmp, fn13, exp1, exp2;
double Tap, dTap, dfn13;
double dr3gamij_1, dr3gamij_3;
double e_core, de_core;
double e_lg, de_lg, r_ij5, r_ij6, re6;
two_body_parameters *twbp;
twbp = &(system->reax_param.tbp[i][j]);
e_core = 0;
de_core = 0;
e_lg = de_lg = 0.0;
/* calculate taper and its derivative */
Tap = workspace->Tap[7] * r_ij + workspace->Tap[6];
Tap = Tap * r_ij + workspace->Tap[5];
Tap = Tap * r_ij + workspace->Tap[4];
Tap = Tap * r_ij + workspace->Tap[3];
Tap = Tap * r_ij + workspace->Tap[2];
Tap = Tap * r_ij + workspace->Tap[1];
Tap = Tap * r_ij + workspace->Tap[0];
dTap = 7*workspace->Tap[7] * r_ij + 6*workspace->Tap[6];
dTap = dTap * r_ij + 5*workspace->Tap[5];
dTap = dTap * r_ij + 4*workspace->Tap[4];
dTap = dTap * r_ij + 3*workspace->Tap[3];
dTap = dTap * r_ij + 2*workspace->Tap[2];
dTap += workspace->Tap[1]/r_ij;
/*vdWaals Calculations*/
if (system->reax_param.gp.vdw_type==1 || system->reax_param.gp.vdw_type==3)
{ // shielding
powr_vdW1 = pow(r_ij, p_vdW1);
powgi_vdW1 = pow(1.0 / twbp->gamma_w, p_vdW1);
fn13 = pow(powr_vdW1 + powgi_vdW1, p_vdW1i);
exp1 = exp(twbp->alpha * (1.0 - fn13 / twbp->r_vdW));
exp2 = exp(0.5 * twbp->alpha * (1.0 - fn13 / twbp->r_vdW));
lr->e_vdW = Tap * twbp->D * (exp1 - 2.0 * exp2);
dfn13 = pow(powr_vdW1 + powgi_vdW1, p_vdW1i-1.0) * pow(r_ij, p_vdW1-2.0);
lr->CEvd = dTap * twbp->D * (exp1 - 2.0 * exp2) -
Tap * twbp->D * (twbp->alpha / twbp->r_vdW) * (exp1 - exp2) * dfn13;
}
else { // no shielding
exp1 = exp(twbp->alpha * (1.0 - r_ij / twbp->r_vdW));
exp2 = exp(0.5 * twbp->alpha * (1.0 - r_ij / twbp->r_vdW));
lr->e_vdW = Tap * twbp->D * (exp1 - 2.0 * exp2);
lr->CEvd = dTap * twbp->D * (exp1 - 2.0 * exp2) -
Tap * twbp->D * (twbp->alpha / twbp->r_vdW) * (exp1 - exp2) / r_ij;
}
if (system->reax_param.gp.vdw_type==2 || system->reax_param.gp.vdw_type==3)
{ // inner wall
e_core = twbp->ecore * exp(twbp->acore * (1.0-(r_ij/twbp->rcore)));
lr->e_vdW += Tap * e_core;
de_core = -(twbp->acore/twbp->rcore) * e_core;
lr->CEvd += dTap * e_core + Tap * de_core / r_ij;
// lg correction, only if lgvdw is yes
if (control->lgflag) {
r_ij5 = pow(r_ij, 5.0);
r_ij6 = pow(r_ij, 6.0);
re6 = pow(twbp->lgre, 6.0);
e_lg = -(twbp->lgcij/(r_ij6 + re6));
lr->e_vdW += Tap * e_lg;
de_lg = -6.0 * e_lg * r_ij5 / (r_ij6 + re6) ;
lr->CEvd += dTap * e_lg + Tap * de_lg/r_ij;
}
}
/* Coulomb calculations */
dr3gamij_1 = (r_ij * r_ij * r_ij + twbp->gamma);
dr3gamij_3 = pow(dr3gamij_1 , 0.33333333333333);
tmp = Tap / dr3gamij_3;
lr->H = EV_to_KCALpMOL * tmp;
lr->e_ele = C_ele * tmp;
lr->CEclmb = C_ele * (dTap - Tap * r_ij / dr3gamij_1) / dr3gamij_3;
}
}