forked from microsoft/unilm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTokenizers.py
173 lines (138 loc) · 6.28 KB
/
Tokenizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# --------------------------------------------------------
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
# Github source: https://github.com/microsoft/unilm/tree/master/beats
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import torch
import torch.nn as nn
from torch.nn import LayerNorm
import torchaudio.compliance.kaldi as ta_kaldi
from backbone import (
TransformerEncoder,
)
from quantizer import (
NormEMAVectorQuantizer,
)
import logging
from typing import Optional
logger = logging.getLogger(__name__)
class TokenizersConfig:
def __init__(self, cfg=None):
self.input_patch_size: int = -1 # path size of patch embedding
self.embed_dim: int = 512 # patch embedding dimension
self.conv_bias: bool = False # include bias in conv encoder
self.encoder_layers: int = 12 # num encoder layers in the transformer
self.encoder_embed_dim: int = 768 # encoder embedding dimension
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
self.encoder_attention_heads: int = 12 # num encoder attention heads
self.activation_fn: str = "gelu" # activation function to use
self.layer_norm_first: bool = False # apply layernorm first in the transformer
self.deep_norm: bool = False # apply deep_norm first in the transformer
# dropouts
self.dropout: float = 0.1 # dropout probability for the transformer
self.attention_dropout: float = 0.1 # dropout probability for attention weights
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
# positional embeddings
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
# relative position embedding
self.relative_position_embedding: bool = False # apply relative position embedding
self.num_buckets: int = 320 # number of buckets for relative position embedding
self.max_distance: int = 1280 # maximum distance for relative position embedding
self.gru_rel_pos: bool = False # apply gated relative position embedding
# quantizer
self.quant_n: int = 1024 # codebook number in quantizer
self.quant_dim: int = 256 # codebook dimension in quantizer
if cfg is not None:
self.update(cfg)
def update(self, cfg: dict):
self.__dict__.update(cfg)
class Tokenizers(nn.Module):
def __init__(
self,
cfg: TokenizersConfig,
) -> None:
super().__init__()
logger.info(f"Tokenizers Config: {cfg.__dict__}")
self.cfg = cfg
self.embed = cfg.embed_dim
self.post_extract_proj = (
nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim
else None
)
self.input_patch_size = cfg.input_patch_size
self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size,
bias=cfg.conv_bias)
self.dropout_input = nn.Dropout(cfg.dropout_input)
assert not cfg.deep_norm or not cfg.layer_norm_first
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
self.quantize = NormEMAVectorQuantizer(
n_embed=cfg.quant_n, embedding_dim=cfg.quant_dim, beta=1.0, kmeans_init=True, decay=0.99,
)
self.quant_n = cfg.quant_n
self.quantize_layer = nn.Sequential(
nn.Linear(cfg.encoder_embed_dim, cfg.encoder_embed_dim),
nn.Tanh(),
nn.Linear(cfg.encoder_embed_dim, cfg.quant_dim) # for quantize
)
def forward_padding_mask(
self,
features: torch.Tensor,
padding_mask: torch.Tensor,
) -> torch.Tensor:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(
padding_mask.size(0), features.size(1), -1
)
padding_mask = padding_mask.all(-1)
return padding_mask
def preprocess(
self,
source: torch.Tensor,
fbank_mean: float = 15.41663,
fbank_std: float = 6.55582,
) -> torch.Tensor:
fbanks = []
for waveform in source:
waveform = waveform.unsqueeze(0) * 2 ** 15
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10)
fbanks.append(fbank)
fbank = torch.stack(fbanks, dim=0)
fbank = (fbank - fbank_mean) / (2 * fbank_std)
return fbank
def extract_labels(
self,
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
fbank_mean: float = 15.41663,
fbank_std: float = 6.55582,
):
fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std)
if padding_mask is not None:
padding_mask = self.forward_padding_mask(fbank, padding_mask)
fbank = fbank.unsqueeze(1)
features = self.patch_embedding(fbank)
features = features.reshape(features.shape[0], features.shape[1], -1)
features = features.transpose(1, 2)
features = self.layer_norm(features)
if padding_mask is not None:
padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
x = self.dropout_input(features)
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
)
quantize_input = self.quantize_layer(x)
quantize_feature, embed_loss, embed_ind = self.quantize(quantize_input)
return embed_ind