forked from zihangdai/xlnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
291 lines (242 loc) · 9.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""Pretraining on TPUs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
import absl.logging as _logging # pylint: disable=unused-import
import numpy as np
import tensorflow as tf
import model_utils
import tpu_estimator
import function_builder
import data_utils
# TPU parameters
flags.DEFINE_string("master", default=None,
help="master")
flags.DEFINE_string("tpu", default=None,
help="The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url.")
flags.DEFINE_string("gcp_project", default=None,
help="Project name for the Cloud TPU-enabled project. If not specified, "
"we will attempt to automatically detect the GCE project from metadata.")
flags.DEFINE_string("tpu_zone",default=None,
help="GCE zone where the Cloud TPU is located in. If not specified, we "
"will attempt to automatically detect the GCE project from metadata.")
flags.DEFINE_bool("use_tpu", default=True,
help="Use TPUs rather than plain CPUs.")
flags.DEFINE_integer("num_hosts", default=1,
help="number of TPU hosts")
flags.DEFINE_integer("num_core_per_host", default=8,
help="number of cores per host")
flags.DEFINE_bool("track_mean", default=False,
help="Whether to track mean loss.")
# Experiment (data/checkpoint/directory) config
flags.DEFINE_integer("num_passes", default=1,
help="Number of passed used for training.")
flags.DEFINE_string("record_info_dir", default=None,
help="Path to local directory containing `record_info-lm.json`.")
flags.DEFINE_string("model_dir", default=None,
help="Estimator model_dir.")
flags.DEFINE_string("init_checkpoint", default=None,
help="Checkpoint path for initializing the model.")
# Optimization config
flags.DEFINE_float("learning_rate", default=1e-4,
help="Maximum learning rate.")
flags.DEFINE_float("clip", default=1.0,
help="Gradient clipping value.")
# lr decay
flags.DEFINE_float("min_lr_ratio", default=0.001,
help="Minimum ratio learning rate.")
flags.DEFINE_integer("warmup_steps", default=0,
help="Number of steps for linear lr warmup.")
flags.DEFINE_float("adam_epsilon", default=1e-8,
help="Adam epsilon.")
flags.DEFINE_string("decay_method", default="poly",
help="Poly or cos.")
flags.DEFINE_float("weight_decay", default=0.0,
help="Weight decay rate.")
# Training config
flags.DEFINE_integer("train_batch_size", default=16,
help="Size of the train batch across all hosts.")
flags.DEFINE_integer("train_steps", default=100000,
help="Total number of training steps.")
flags.DEFINE_integer("iterations", default=1000,
help="Number of iterations per repeat loop.")
flags.DEFINE_integer("save_steps", default=None,
help="Number of steps for model checkpointing. "
"None for not saving checkpoints")
flags.DEFINE_integer("max_save", default=100000,
help="Maximum number of checkpoints to save.")
# Data config
flags.DEFINE_integer("seq_len", default=0,
help="Sequence length for pretraining.")
flags.DEFINE_integer("reuse_len", default=0,
help="How many tokens to be reused in the next batch. "
"Could be half of `seq_len`.")
flags.DEFINE_bool("uncased", False,
help="Use uncased inputs or not.")
flags.DEFINE_integer("perm_size", 0,
help="Window size of permutation.")
flags.DEFINE_bool("bi_data", default=True,
help="Use bidirectional data streams, i.e., forward & backward.")
flags.DEFINE_integer("mask_alpha", default=6,
help="How many tokens to form a group.")
flags.DEFINE_integer("mask_beta", default=1,
help="How many tokens to mask within each group.")
flags.DEFINE_integer("num_predict", default=None,
help="Number of tokens to predict in partial prediction.")
flags.DEFINE_integer("n_token", 32000, help="Vocab size")
# Model config
flags.DEFINE_integer("mem_len", default=0,
help="Number of steps to cache")
flags.DEFINE_bool("same_length", default=False,
help="Same length attention")
flags.DEFINE_integer("clamp_len", default=-1,
help="Clamp length")
flags.DEFINE_integer("n_layer", default=6,
help="Number of layers.")
flags.DEFINE_integer("d_model", default=32,
help="Dimension of the model.")
flags.DEFINE_integer("d_embed", default=32,
help="Dimension of the embeddings.")
flags.DEFINE_integer("n_head", default=4,
help="Number of attention heads.")
flags.DEFINE_integer("d_head", default=8,
help="Dimension of each attention head.")
flags.DEFINE_integer("d_inner", default=32,
help="Dimension of inner hidden size in positionwise feed-forward.")
flags.DEFINE_float("dropout", default=0.0,
help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.0,
help="Attention dropout rate.")
flags.DEFINE_bool("untie_r", default=False,
help="Untie r_w_bias and r_r_bias")
flags.DEFINE_string("summary_type", default="last",
help="Method used to summarize a sequence into a compact vector.")
flags.DEFINE_string("ff_activation", default="relu",
help="Activation type used in position-wise feed-forward.")
flags.DEFINE_bool("use_bfloat16", False,
help="Whether to use bfloat16.")
# Parameter initialization
flags.DEFINE_enum("init", default="normal",
enum_values=["normal", "uniform"],
help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02,
help="Initialization std when init is normal.")
flags.DEFINE_float("init_range", default=0.1,
help="Initialization std when init is uniform.")
FLAGS = flags.FLAGS
def get_model_fn():
"""doc."""
def model_fn(features, labels, mode, params):
"""doc."""
#### Training or Evaluation
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
assert is_training
#### Retrieve `mems` from `params["cache"]`
mems = {}
idx = 0
if FLAGS.mem_len > 0:
mems["mems"] = params["cache"]
#### Get loss from inputs
total_loss, new_mems, monitor_dict = function_builder.get_loss(
FLAGS, features, labels, mems, is_training)
#### Turn `new_mems` into `new_cache`
new_cache = []
if FLAGS.mem_len > 0:
new_cache += new_mems["mems"]
#### Check model parameters
num_params = sum([np.prod(v.shape) for v in tf.trainable_variables()])
tf.logging.info("#params: {}".format(num_params))
#### Configuring the optimizer
train_op, learning_rate, gnorm = model_utils.get_train_op(
FLAGS, total_loss)
monitor_dict["lr"] = learning_rate
monitor_dict["gnorm"] = gnorm
#### Customized initial checkpoint
scaffold_fn = model_utils.init_from_checkpoint(FLAGS, global_vars=True)
#### Creating host calls
host_call = function_builder.construct_scalar_host_call(
monitor_dict=monitor_dict,
model_dir=FLAGS.model_dir,
prefix="train/",
reduce_fn=tf.reduce_mean)
#### Constucting training TPUEstimatorSpec with new cache.
train_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, loss=total_loss, train_op=train_op, host_call=host_call,
scaffold_fn=scaffold_fn)
train_spec.cache = new_cache
return train_spec
return model_fn
def get_cache_fn(mem_len):
"""doc."""
tf_float = tf.bfloat16 if FLAGS.use_bfloat16 else tf.float32
def cache_fn(batch_size):
mems = []
if FLAGS.mem_len > 0:
for _ in range(FLAGS.n_layer):
zeros = tf.zeros(
[mem_len, batch_size, FLAGS.d_model],
dtype=tf_float)
mems.append(zeros)
return mems
if mem_len > 0:
return cache_fn
else:
return None
def get_input_fn(split):
"""doc."""
assert split == "train"
batch_size = FLAGS.train_batch_size
input_fn, record_info_dict = data_utils.get_input_fn(
tfrecord_dir=FLAGS.record_info_dir,
split=split,
bsz_per_host=batch_size // FLAGS.num_hosts,
seq_len=FLAGS.seq_len,
reuse_len=FLAGS.reuse_len,
bi_data=FLAGS.bi_data,
num_hosts=FLAGS.num_hosts,
num_core_per_host=FLAGS.num_core_per_host,
perm_size=FLAGS.perm_size,
mask_alpha=FLAGS.mask_alpha,
mask_beta=FLAGS.mask_beta,
uncased=FLAGS.uncased,
num_passes=FLAGS.num_passes,
use_bfloat16=FLAGS.use_bfloat16,
num_predict=FLAGS.num_predict)
return input_fn, record_info_dict
def main(unused_argv):
del unused_argv # Unused
tf.logging.set_verbosity(tf.logging.INFO)
assert FLAGS.seq_len > 0
assert FLAGS.perm_size > 0
FLAGS.n_token = data_utils.VOCAB_SIZE
tf.logging.info("n_token {}".format(FLAGS.n_token))
if not tf.gfile.Exists(FLAGS.model_dir):
tf.gfile.MakeDirs(FLAGS.model_dir)
# Get train input function
train_input_fn, train_record_info_dict = get_input_fn("train")
tf.logging.info("num of batches {}".format(
train_record_info_dict["num_batch"]))
# Get train cache function
train_cache_fn = get_cache_fn(FLAGS.mem_len)
##### Get model function
model_fn = get_model_fn()
##### Create TPUEstimator
# TPU Configuration
run_config = model_utils.configure_tpu(FLAGS)
# TPU Estimator
estimator = tpu_estimator.TPUEstimator(
model_fn=model_fn,
train_cache_fn=train_cache_fn,
use_tpu=FLAGS.use_tpu,
config=run_config,
params={"track_mean": FLAGS.track_mean},
train_batch_size=FLAGS.train_batch_size,
eval_on_tpu=FLAGS.use_tpu)
#### Training
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_steps)
if __name__ == "__main__":
app.run(main)