forked from zarr-developers/zarr-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
747 lines (584 loc) · 22.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
import inspect
import json
import math
import numbers
from textwrap import TextWrapper
import mmap
import time
from typing import Any, Callable, Dict, Optional, Tuple, Union
import numpy as np
from asciitree import BoxStyle, LeftAligned
from asciitree.traversal import Traversal
from collections.abc import Iterable
from numcodecs.compat import (
ensure_text,
ensure_ndarray_like,
ensure_bytes,
ensure_contiguous_ndarray_like
)
from numcodecs.ndarray_like import NDArrayLike
from numcodecs.registry import codec_registry
from numcodecs.blosc import cbuffer_sizes, cbuffer_metainfo
def flatten(arg: Iterable) -> Iterable:
for element in arg:
if isinstance(element, Iterable) and not isinstance(element, (str, bytes)):
yield from flatten(element)
else:
yield element
# codecs to use for object dtype convenience API
object_codecs = {
str.__name__: 'vlen-utf8',
bytes.__name__: 'vlen-bytes',
'array': 'vlen-array',
}
class NumberEncoder(json.JSONEncoder):
def default(self, o):
# See json.JSONEncoder.default docstring for explanation
# This is necessary to encode numpy dtype
if isinstance(o, numbers.Integral):
return int(o)
if isinstance(o, numbers.Real):
return float(o)
return json.JSONEncoder.default(self, o)
def json_dumps(o: Any) -> bytes:
"""Write JSON in a consistent, human-readable way."""
return json.dumps(o, indent=4, sort_keys=True, ensure_ascii=True,
separators=(',', ': '), cls=NumberEncoder).encode('ascii')
def json_loads(s: Union[bytes, str]) -> Dict[str, Any]:
"""Read JSON in a consistent way."""
return json.loads(ensure_text(s, 'utf-8'))
def normalize_shape(shape) -> Tuple[int]:
"""Convenience function to normalize the `shape` argument."""
if shape is None:
raise TypeError('shape is None')
# handle 1D convenience form
if isinstance(shape, numbers.Integral):
shape = (int(shape),)
# normalize
shape = tuple(int(s) for s in shape)
return shape
# code to guess chunk shape, adapted from h5py
CHUNK_BASE = 256*1024 # Multiplier by which chunks are adjusted
CHUNK_MIN = 128*1024 # Soft lower limit (128k)
CHUNK_MAX = 64*1024*1024 # Hard upper limit
def guess_chunks(shape: Tuple[int, ...], typesize: int) -> Tuple[int, ...]:
"""
Guess an appropriate chunk layout for an array, given its shape and
the size of each element in bytes. Will allocate chunks only as large
as MAX_SIZE. Chunks are generally close to some power-of-2 fraction of
each axis, slightly favoring bigger values for the last index.
Undocumented and subject to change without warning.
"""
ndims = len(shape)
# require chunks to have non-zero length for all dimensions
chunks = np.maximum(np.array(shape, dtype='=f8'), 1)
# Determine the optimal chunk size in bytes using a PyTables expression.
# This is kept as a float.
dset_size = np.product(chunks)*typesize
target_size = CHUNK_BASE * (2**np.log10(dset_size/(1024.*1024)))
if target_size > CHUNK_MAX:
target_size = CHUNK_MAX
elif target_size < CHUNK_MIN:
target_size = CHUNK_MIN
idx = 0
while True:
# Repeatedly loop over the axes, dividing them by 2. Stop when:
# 1a. We're smaller than the target chunk size, OR
# 1b. We're within 50% of the target chunk size, AND
# 2. The chunk is smaller than the maximum chunk size
chunk_bytes = np.product(chunks)*typesize
if (chunk_bytes < target_size or
abs(chunk_bytes-target_size)/target_size < 0.5) and \
chunk_bytes < CHUNK_MAX:
break
if np.product(chunks) == 1:
break # Element size larger than CHUNK_MAX
chunks[idx % ndims] = math.ceil(chunks[idx % ndims] / 2.0)
idx += 1
return tuple(int(x) for x in chunks)
def normalize_chunks(
chunks: Any, shape: Tuple[int, ...], typesize: int
) -> Tuple[int, ...]:
"""Convenience function to normalize the `chunks` argument for an array
with the given `shape`."""
# N.B., expect shape already normalized
# handle auto-chunking
if chunks is None or chunks is True:
return guess_chunks(shape, typesize)
# handle no chunking
if chunks is False:
return shape
# handle 1D convenience form
if isinstance(chunks, numbers.Integral):
chunks = tuple(int(chunks) for _ in shape)
# handle bad dimensionality
if len(chunks) > len(shape):
raise ValueError('too many dimensions in chunks')
# handle underspecified chunks
if len(chunks) < len(shape):
# assume chunks across remaining dimensions
chunks += shape[len(chunks):]
# handle None or -1 in chunks
if -1 in chunks or None in chunks:
chunks = tuple(s if c == -1 or c is None else int(c)
for s, c in zip(shape, chunks))
return tuple(chunks)
def normalize_dtype(dtype: Union[str, np.dtype], object_codec) -> Tuple[np.dtype, Any]:
# convenience API for object arrays
if inspect.isclass(dtype):
dtype = dtype.__name__ # type: ignore
if isinstance(dtype, str):
# allow ':' to delimit class from codec arguments
tokens = dtype.split(':')
key = tokens[0]
if key in object_codecs:
dtype = np.dtype(object)
if object_codec is None:
codec_id = object_codecs[key]
if len(tokens) > 1:
args = tokens[1].split(',')
else:
args = []
try:
object_codec = codec_registry[codec_id](*args)
except KeyError: # pragma: no cover
raise ValueError('codec %r for object type %r is not '
'available; please provide an '
'object_codec manually' % (codec_id, key))
return dtype, object_codec
dtype = np.dtype(dtype)
# don't allow generic datetime64 or timedelta64, require units to be specified
if dtype == np.dtype('M8') or dtype == np.dtype('m8'):
raise ValueError('datetime64 and timedelta64 dtypes with generic units '
'are not supported, please specify units (e.g., "M8[ns]")')
return dtype, object_codec
# noinspection PyTypeChecker
def is_total_slice(item, shape: Tuple[int]) -> bool:
"""Determine whether `item` specifies a complete slice of array with the
given `shape`. Used to optimize __setitem__ operations on the Chunk
class."""
# N.B., assume shape is normalized
if item == Ellipsis:
return True
if item == slice(None):
return True
if isinstance(item, slice):
item = item,
if isinstance(item, tuple):
return all(
(isinstance(s, slice) and
((s == slice(None)) or
((s.stop - s.start == l) and (s.step in [1, None]))))
for s, l in zip(item, shape)
)
else:
raise TypeError('expected slice or tuple of slices, found %r' % item)
def normalize_resize_args(old_shape, *args):
# normalize new shape argument
if len(args) == 1:
new_shape = args[0]
else:
new_shape = args
if isinstance(new_shape, int):
new_shape = (new_shape,)
else:
new_shape = tuple(new_shape)
if len(new_shape) != len(old_shape):
raise ValueError('new shape must have same number of dimensions')
# handle None in new_shape
new_shape = tuple(s if n is None else int(n)
for s, n in zip(old_shape, new_shape))
return new_shape
def human_readable_size(size) -> str:
if size < 2**10:
return '%s' % size
elif size < 2**20:
return '%.1fK' % (size / float(2**10))
elif size < 2**30:
return '%.1fM' % (size / float(2**20))
elif size < 2**40:
return '%.1fG' % (size / float(2**30))
elif size < 2**50:
return '%.1fT' % (size / float(2**40))
else:
return '%.1fP' % (size / float(2**50))
def normalize_order(order: str) -> str:
order = str(order).upper()
if order not in ['C', 'F']:
raise ValueError("order must be either 'C' or 'F', found: %r" % order)
return order
def normalize_dimension_separator(sep: Optional[str]) -> Optional[str]:
if sep in (".", "/", None):
return sep
else:
raise ValueError(
"dimension_separator must be either '.' or '/', found: %r" % sep)
def normalize_fill_value(fill_value, dtype: np.dtype):
if fill_value is None or dtype.hasobject:
# no fill value
pass
elif fill_value == 0:
# this should be compatible across numpy versions for any array type, including
# structured arrays
fill_value = np.zeros((), dtype=dtype)[()]
elif dtype.kind == 'U':
# special case unicode because of encoding issues on Windows if passed through numpy
# https://github.com/alimanfoo/zarr/pull/172#issuecomment-343782713
if not isinstance(fill_value, str):
raise ValueError('fill_value {!r} is not valid for dtype {}; must be a '
'unicode string'.format(fill_value, dtype))
else:
try:
if isinstance(fill_value, bytes) and dtype.kind == 'V':
# special case for numpy 1.14 compatibility
fill_value = np.array(fill_value, dtype=dtype.str).view(dtype)[()]
else:
fill_value = np.array(fill_value, dtype=dtype)[()]
except Exception as e:
# re-raise with our own error message to be helpful
raise ValueError('fill_value {!r} is not valid for dtype {}; nested '
'exception: {}'.format(fill_value, dtype, e))
return fill_value
def normalize_storage_path(path: Union[str, bytes, None]) -> str:
# handle bytes
if isinstance(path, bytes):
path = str(path, 'ascii')
# ensure str
if path is not None and not isinstance(path, str):
path = str(path)
if path:
# convert backslash to forward slash
path = path.replace('\\', '/')
# ensure no leading slash
while len(path) > 0 and path[0] == '/':
path = path[1:]
# ensure no trailing slash
while len(path) > 0 and path[-1] == '/':
path = path[:-1]
# collapse any repeated slashes
previous_char = None
collapsed = ''
for char in path:
if char == '/' and previous_char == '/':
pass
else:
collapsed += char
previous_char = char
path = collapsed
# don't allow path segments with just '.' or '..'
segments = path.split('/')
if any(s in {'.', '..'} for s in segments):
raise ValueError("path containing '.' or '..' segment not allowed")
else:
path = ''
return path
def buffer_size(v) -> int:
return ensure_ndarray_like(v).nbytes
def info_text_report(items: Dict[Any, Any]) -> str:
keys = [k for k, v in items]
max_key_len = max(len(k) for k in keys)
report = ''
for k, v in items:
wrapper = TextWrapper(width=80,
initial_indent=k.ljust(max_key_len) + ' : ',
subsequent_indent=' '*max_key_len + ' : ')
text = wrapper.fill(str(v))
report += text + '\n'
return report
def info_html_report(items) -> str:
report = '<table class="zarr-info">'
report += '<tbody>'
for k, v in items:
report += '<tr>' \
'<th style="text-align: left">%s</th>' \
'<td style="text-align: left">%s</td>' \
'</tr>' \
% (k, v)
report += '</tbody>'
report += '</table>'
return report
class InfoReporter:
def __init__(self, obj):
self.obj = obj
def __repr__(self):
items = self.obj.info_items()
return info_text_report(items)
def _repr_html_(self):
items = self.obj.info_items()
return info_html_report(items)
class TreeNode:
def __init__(self, obj, depth=0, level=None):
self.obj = obj
self.depth = depth
self.level = level
def get_children(self):
if hasattr(self.obj, 'values'):
if self.level is None or self.depth < self.level:
depth = self.depth + 1
return [TreeNode(o, depth=depth, level=self.level)
for o in self.obj.values()]
return []
def get_text(self):
name = self.obj.name.split("/")[-1] or "/"
if hasattr(self.obj, 'shape'):
name += ' {} {}'.format(self.obj.shape, self.obj.dtype)
return name
def get_type(self):
return type(self.obj).__name__
class TreeTraversal(Traversal):
def get_children(self, node):
return node.get_children()
def get_root(self, tree):
return tree
def get_text(self, node):
return node.get_text()
tree_group_icon = 'folder'
tree_array_icon = 'table'
def tree_get_icon(stype: str) -> str:
if stype == "Array":
return tree_array_icon
elif stype == "Group":
return tree_group_icon
else:
raise ValueError("Unknown type: %s" % stype)
def tree_widget_sublist(node, root=False, expand=False):
import ipytree
result = ipytree.Node()
result.icon = tree_get_icon(node.get_type())
if root or (expand is True) or (isinstance(expand, int) and node.depth < expand):
result.opened = True
else:
result.opened = False
result.name = node.get_text()
result.nodes = [tree_widget_sublist(c, expand=expand) for c in node.get_children()]
result.disabled = True
return result
def tree_widget(group, expand, level):
try:
import ipytree
except ImportError as error:
raise ImportError(
"{}: Run `pip install zarr[jupyter]` or `conda install ipytree`"
"to get the required ipytree dependency for displaying the tree "
"widget. If using jupyterlab<3, you also need to run "
"`jupyter labextension install ipytree`".format(error)
)
result = ipytree.Tree()
root = TreeNode(group, level=level)
result.add_node(tree_widget_sublist(root, root=True, expand=expand))
return result
class TreeViewer:
def __init__(self, group, expand=False, level=None):
self.group = group
self.expand = expand
self.level = level
self.text_kwargs = dict(
horiz_len=2,
label_space=1,
indent=1
)
self.bytes_kwargs = dict(
UP_AND_RIGHT="+",
HORIZONTAL="-",
VERTICAL="|",
VERTICAL_AND_RIGHT="+"
)
self.unicode_kwargs = dict(
UP_AND_RIGHT="\u2514",
HORIZONTAL="\u2500",
VERTICAL="\u2502",
VERTICAL_AND_RIGHT="\u251C"
)
def __bytes__(self):
drawer = LeftAligned(
traverse=TreeTraversal(),
draw=BoxStyle(gfx=self.bytes_kwargs, **self.text_kwargs)
)
root = TreeNode(self.group, level=self.level)
result = drawer(root)
# Unicode characters slip in on Python 3.
# So we need to straighten that out first.
result = result.encode()
return result
def __unicode__(self):
drawer = LeftAligned(
traverse=TreeTraversal(),
draw=BoxStyle(gfx=self.unicode_kwargs, **self.text_kwargs)
)
root = TreeNode(self.group, level=self.level)
return drawer(root)
def __repr__(self):
return self.__unicode__()
def _repr_mimebundle_(self, **kwargs):
tree = tree_widget(self.group, expand=self.expand, level=self.level)
return tree._repr_mimebundle_(**kwargs)
def check_array_shape(param, array, shape):
if not hasattr(array, 'shape'):
raise TypeError('parameter {!r}: expected an array-like object, got {!r}'
.format(param, type(array)))
if array.shape != shape:
raise ValueError('parameter {!r}: expected array with shape {!r}, got {!r}'
.format(param, shape, array.shape))
def is_valid_python_name(name):
from keyword import iskeyword
return name.isidentifier() and not iskeyword(name)
class NoLock:
"""A lock that doesn't lock."""
def __enter__(self):
pass
def __exit__(self, *args):
pass
nolock = NoLock()
class PartialReadBuffer:
def __init__(self, store_key, chunk_store):
self.chunk_store = chunk_store
# is it fsstore or an actual fsspec map object
assert hasattr(self.chunk_store, "map")
self.map = self.chunk_store.map
self.fs = self.chunk_store.fs
self.store_key = store_key
self.buff = None
self.nblocks = None
self.start_points = None
self.n_per_block = None
self.start_points_max = None
self.read_blocks = set()
_key_path = self.map._key_to_str(store_key)
_key_path = _key_path.split('/')
_chunk_path = [self.chunk_store._normalize_key(_key_path[-1])]
_key_path = '/'.join(_key_path[:-1] + _chunk_path)
self.key_path = _key_path
def prepare_chunk(self):
assert self.buff is None
header = self.fs.read_block(self.key_path, 0, 16)
nbytes, self.cbytes, blocksize = cbuffer_sizes(header)
typesize, _shuffle, _memcpyd = cbuffer_metainfo(header)
self.buff = mmap.mmap(-1, self.cbytes)
self.buff[0:16] = header
self.nblocks = nbytes / blocksize
self.nblocks = (
int(self.nblocks)
if self.nblocks == int(self.nblocks)
else int(self.nblocks + 1)
)
if self.nblocks == 1:
self.buff = self.read_full()
return
start_points_buffer = self.fs.read_block(
self.key_path, 16, int(self.nblocks * 4)
)
self.start_points = np.frombuffer(
start_points_buffer, count=self.nblocks, dtype=np.int32
)
self.start_points_max = self.start_points.max()
self.buff[16: (16 + (self.nblocks * 4))] = start_points_buffer
self.n_per_block = blocksize / typesize
def read_part(self, start, nitems):
assert self.buff is not None
if self.nblocks == 1:
return
start_block = int(start / self.n_per_block)
wanted_decompressed = 0
while wanted_decompressed < nitems:
if start_block not in self.read_blocks:
start_byte = self.start_points[start_block]
if start_byte == self.start_points_max:
stop_byte = self.cbytes
else:
stop_byte = self.start_points[self.start_points > start_byte].min()
length = stop_byte - start_byte
data_buff = self.fs.read_block(self.key_path, start_byte, length)
self.buff[start_byte:stop_byte] = data_buff
self.read_blocks.add(start_block)
if wanted_decompressed == 0:
wanted_decompressed += ((start_block + 1) * self.n_per_block) - start
else:
wanted_decompressed += self.n_per_block
start_block += 1
def read_full(self):
return self.chunk_store[self.store_key]
class UncompressedPartialReadBufferV3:
def __init__(self, store_key, chunk_store, itemsize):
assert chunk_store.supports_efficient_get_partial_values
self.chunk_store = chunk_store
self.store_key = store_key
self.itemsize = itemsize
def prepare_chunk(self):
pass
def read_part(self, start, nitems):
return self.chunk_store.get_partial_values(
[(self.store_key, (start * self.itemsize, nitems * self.itemsize))]
)[0]
def read_full(self):
return self.chunk_store[self.store_key]
def retry_call(callabl: Callable,
args=None,
kwargs=None,
exceptions: Tuple[Any, ...] = (),
retries: int = 10,
wait: float = 0.1) -> Any:
"""
Make several attempts to invoke the callable. If one of the given exceptions
is raised, wait the given period of time and retry up to the given number of
retries.
"""
if args is None:
args = ()
if kwargs is None:
kwargs = {}
for attempt in range(1, retries+1):
try:
return callabl(*args, **kwargs)
except exceptions:
if attempt < retries:
time.sleep(wait)
else:
raise
def all_equal(value: Any, array: Any):
"""
Test if all the elements of an array are equivalent to a value.
If `value` is None, then this function does not do any comparison and
returns False.
"""
if value is None:
return False
if not value:
# if `value` is falsey, then just 1 truthy value in `array`
# is sufficient to return False. We assume here that np.any is
# optimized to return on the first truthy value in `array`.
try:
return not np.any(array)
except (TypeError, ValueError): # pragma: no cover
pass
if np.issubdtype(array.dtype, np.object_):
# we have to flatten the result of np.equal to handle outputs like
# [np.array([True,True]), True, True]
return all(flatten(np.equal(value, array, dtype=array.dtype)))
else:
# Numpy errors if you call np.isnan on custom dtypes, so ensure
# we are working with floats before calling isnan
if np.issubdtype(array.dtype, np.floating) and np.isnan(value):
return np.all(np.isnan(array))
else:
# using == raises warnings from numpy deprecated pattern, but
# using np.equal() raises type errors for structured dtypes...
return np.all(value == array)
def ensure_contiguous_ndarray_or_bytes(buf) -> Union[NDArrayLike, bytes]:
"""Convenience function to coerce `buf` to ndarray-like array or bytes.
First check if `buf` can be zero-copy converted to a contiguous array.
If not, `buf` will be copied to a newly allocated `bytes` object.
Parameters
----------
buf : ndarray-like, array-like, or bytes-like
A numpy array like object such as numpy.ndarray, cupy.ndarray, or
any object exporting a buffer interface.
Returns
-------
arr : NDArrayLike or bytes
A ndarray-like or bytes object
"""
try:
return ensure_contiguous_ndarray_like(buf)
except TypeError:
# An error is raised if `buf` couldn't be zero-copy converted
return ensure_bytes(buf)