-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatasets.py
208 lines (176 loc) · 7.55 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import os
import json
from torchvision import datasets, transforms
from torchvision.datasets.folder import ImageFolder, default_loader
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
import numpy as np
from PIL import Image
class INatDataset(ImageFolder):
def __init__(self, root, train=True, year=2018, transform=None, target_transform=None,
category='name', loader=default_loader):
self.transform = transform
self.loader = loader
self.target_transform = target_transform
self.year = year
# assert category in ['kingdom','phylum','class','order','supercategory','family','genus','name']
path_json = os.path.join(root, f'{"train" if train else "val"}{year}.json')
with open(path_json) as json_file:
data = json.load(json_file)
with open(os.path.join(root, 'categories.json')) as json_file:
data_catg = json.load(json_file)
path_json_for_targeter = os.path.join(root, f"train{year}.json")
with open(path_json_for_targeter) as json_file:
data_for_targeter = json.load(json_file)
targeter = {}
indexer = 0
for elem in data_for_targeter['annotations']:
king = []
king.append(data_catg[int(elem['category_id'])][category])
if king[0] not in targeter.keys():
targeter[king[0]] = indexer
indexer += 1
self.nb_classes = len(targeter)
self.samples = []
for elem in data['images']:
cut = elem['file_name'].split('/')
target_current = int(cut[2])
path_current = os.path.join(root, cut[0], cut[2], cut[3])
categors = data_catg[target_current]
target_current_true = targeter[categors[category]]
self.samples.append((path_current, target_current_true))
# __getitem__ and __len__ inherited from ImageFolder
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
nb_classes = 100
elif args.data_set == 'CIFAR10':
dataset = datasets.CIFAR10(args.data_path, train=is_train, transform=transform)
nb_classes = 10
elif args.data_set == 'IMNET':
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == 'IMNETV2':
dataset = datasets.ImageFolder(args.data_path, transform=transform)
nb_classes = 1000
elif args.data_set == 'INAT':
dataset = INatDataset(args.data_path, train=is_train, year=2018,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
elif args.data_set == 'INAT19':
dataset = INatDataset(args.data_path, train=is_train, year=2019,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
return dataset, nb_classes
class AddSaltPepperNoise(object):
def __init__(self, density=0):
self.density = density
def __call__(self, img):
img = np.array(img) # 图片转numpy
h, w, c = img.shape
Nd = self.density
Sd = 1 - Nd
mask = np.random.choice((0, 1, 2), size=(h, w, 1), p=[Nd/2.0, Nd/2.0, Sd]) # 生成一个通道的mask
mask = np.repeat(mask, c, axis=2) # 在通道的维度复制,生成彩色的mask
img[mask == 0] = 0 # 椒
img[mask == 1] = 255 # 盐
img= Image.fromarray(img.astype('uint8')).convert('RGB') # numpy转图片
return img
class AddGaussianNoise(object):
def __init__(self, mean=0.0, variance=1.0, density=1.0):
self.mean = mean
self.variance = variance
self.density = density
def __call__(self, img):
img = np.array(img)
h, w, c = img.shape
N = self.density * 255 * np.random.normal(loc=self.mean, scale=self.variance, size=(h, w, 1))
N = np.repeat(N, c, axis=2)
img = N + img
img[img > 255] = 255
img[img < 0] = 0
img = Image.fromarray(img.astype('uint8')).convert('RGB')
return img
class AddUniformNoise(object):
def __init__(self, density=1.0):
self.density = density
def __call__(self, img):
img = np.array(img)
h, w, c = img.shape
N = np.random.uniform(0, self.density * 255, size=(h, w, 1))
N = np.repeat(N, c, axis=2)
img = N + img
img[img > 255] = 255
img[img < 0] = 0
img = Image.fromarray(img.astype('uint8')).convert('RGB')
return img
class AddExpNoise(object):
def __init__(self, density=1.0):
self.density = density
def __call__(self, img):
img = np.array(img)
h, w, c = img.shape
N = np.random.exponential(self.density * 255, size=(h, w, 1))
N = np.repeat(N, c, axis=2)
img = N + img
img[img > 255] = 255
img[img < 0] = 0
img = Image.fromarray(img.astype('uint8')).convert('RGB')
return img
class FFTFilter(object):
def __init__(self, s=0.1):
self.s = s
def __call__(self, img):
img = np.array(img)
h, w, c = img.shape
h_s, w_s = int(h*self.s), int(w*self.s)
fft = np.fft.fft2(img)
N = self.density * 255 * np.random.normal(loc=self.mean, scale=self.variance, size=(h, w, 1))
N = np.repeat(N, c, axis=2)
img = N + img
img[img > 255] = 255
img[img < 0] = 0
img = Image.fromarray(img.astype('uint8')).convert('RGB')
return img
def build_transform(is_train, args):
resize_im = args.input_size > 32
if is_train and args.for_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
# if args.gaussian:
# t.append(transforms.GaussianBlur(7))
# if args.noise:
# t.append(AddSaltPepperNoise(density=args.noise_density))
# # t.append(AddGaussianNoise(density=args.noise_density))
# # t.append(AddUniformNoise(density=args.noise_density))
# # t.append(AddExpNoise(density=args.noise_density))
t.append(transforms.ToTensor())
if args.normalize:
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)