Skip to content

StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

License

Notifications You must be signed in to change notification settings

DarkDanrop/stargan-v2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StarGAN v2: Diverse Image Synthesis for Multiple Domains (CVPR 2020)

This repository provides the official PyTorch implementation of the following paper:

StarGAN v2: Diverse Image Synthesis for Multiple Domains
Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-Woo Ha
Clova AI Research, NAVER Corp. (* indicates equal contribution)
https://arxiv.org/abs/1912.01865

Abstract: A good image-to-image translation model should learn a mapping between different visual domains while satisfying the following properties: 1) diversity of generated images and 2) scalability over multiple domains. Existing methods address either of the issues, having limited diversity or multiple models for all domains. We propose StarGAN v2, a single framework that tackles both and shows significantly improved results over the baselines. Experiments on CelebA-HQ and a new animal faces dataset (AFHQ) validate our superiority in terms of visual quality, diversity, and scalability. To better assess image-to-image translation models, we release AFHQ, high-quality animal faces with large inter- and intra-domain variations. The code, pretrained models, and dataset will be released for reproducibility.

Results

StarGAN v2 can transform a source image into an output image reflecting the style (e.g., hairstyle and makeup) of a given reference image. Additional high-quality videos can be found here.

Animal Faces-HQ dataset (AFHQ)

We release a new dataset of animal faces, Animal Faces-HQ (AFHQ), consisting of 15,000 high-quality images at 512×512 resolution. The figure above shows example images of the AFHQ dataset. The dataset includes three domains of cat, dog, and wildlife, each providing about 5000 images. By having multiple (three) domains and diverse images of various breeds per each domain, AFHQ sets a challenging image-to-image translation problem. For each domain, we select 500 images as a test set and provide all remaining images as a training set. To download the dataset, run the command below.

cd stargan-v2
bash download.sh afhq

License

The source code, pretrained models, and dataset will be available under Creative Commons BY-NC 4.0 license by NAVER Corporation. You can use, copy, tranform and build upon the material for non-commercial purposes as long as you give appropriate credit by citing our paper, and indicate if changes were made.

Installation

The code and usage examples will be updated soon. Please stay tuned.

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{choi2020starganv2,
  title={StarGAN v2: Diverse Image Synthesis for Multiple Domains},
  author={Yunjey Choi and Youngjung Uh and Jaejun Yoo and Jung-Woo Ha},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}

About

StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.8%
  • Shell 2.2%