-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference_video.py
97 lines (75 loc) · 3.08 KB
/
inference_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from __future__ import print_function, division
import os
import torch
from torch import nn,optim
import torch.nn.functional as F
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import pretrainedmodels
import torch
import pretrainedmodels.utils as utils
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve,auc
import matplotlib.pyplot as plt
import cv2
from PIL import Image
from go_black import *
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#----------------model define-----------------
model_name = 'pnasnet5large'
print(pretrainedmodels.pretrained_settings['pnasnet5large'])
model = pretrainedmodels.__dict__[model_name](num_classes=6, pretrained=None)
model.to(device)
print(model)
model.load_state_dict(torch.load("./checkpoint/pnasnet_100_0.8644578313253012.pth"))
model.eval()
vid = cv2.VideoCapture("./test1.mp4")
video_frame_cnt = int(vid.get(7))
video_width = int(vid.get(3))
video_height = int(vid.get(4))
video_fps = int(vid.get(5))
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
videoWriter = cv2.VideoWriter('video_result.mp4', fourcc, video_fps, (video_width, video_height))
target_name = ["MC","SJC","HJC","JJC","ZC","WZ"]
for i in range(video_frame_cnt):
print(str(i)+"/"+str(video_frame_cnt))
ret, img = vid.read()
image = img.copy()
img_h,img_w = img.shape[0],img.shape[1]
x1,y1,height,width = crop_single(image)
img_crop = img[y1:y1 + height, x1:x1 + width]
c1 = (x1,y1)
c2 = (x1 + width,y1 + height)
cv2.rectangle(img, c1, c2, (0,0,255),2)
img_1 = cv2.cvtColor(img_crop,cv2.COLOR_BGR2RGB)
img_1 = Image.fromarray(img_1)
longer_side = max(img_1.size)
horizontal_padding = (longer_side - img_1.size[0]) / 2
vertical_padding = (longer_side - img_1.size[1]) / 2
img_1 = img_1.crop((-horizontal_padding,
-vertical_padding,
img_1.size[0] + horizontal_padding,
img_1.size[1] + vertical_padding))
img_1 = img_1.resize((331,331),Image.BICUBIC)
img_2 = transforms.ToTensor()(img_1)
img_2 = transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))(img_2)
input_tensor = img_2.unsqueeze(0) # 3x331x331 -> 1x3x331x331
input_tensor = input_tensor.to(device)
output_logits = model(input_tensor) # 1x6
output_prob = np.max(F.softmax(output_logits,dim =1).detach().cpu().numpy()) #对每一行进行softmax
pred_label = np.argmax(output_logits.detach().cpu()).item()
label_name = target_name[pred_label]
# myText = "预测: {} | 概率: {}%".format(label_name,round(output_prob*100,4))
# font_size = 30
# img = drawText(img,myText, (40,40),font_size,(255,255,0),font='cn_3')
cv2.putText(img, "Label: {} | Prob: {}%".format(label_name,round(output_prob*100,4)), (40, 40), 0,
fontScale=1, color=(255, 255, 0), thickness=2)
# cv2.imshow('image', img)
videoWriter.write(img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
vid.release()
videoWriter.release()