-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathscore_2021.py
196 lines (152 loc) · 6.64 KB
/
score_2021.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python3
import json
import os
import sys
import numpy as np
import scipy.io as sio
import wfdb
"""
Written by: Xingyao Wang, Chengyu Liu
School of Instrument Science and Engineering
Southeast University, China
"""
R = np.array([[1, -1, -0.5], [-2, 1, 0], [-1, 0, 1]])
class RefInfo:
def __init__(self, sample_path):
self.sample_path = sample_path
(
self.fs,
self.len_sig,
self.beat_loc,
self.af_starts,
self.af_ends,
self.class_true,
) = self._load_ref()
self.endpoints_true = np.dstack((self.af_starts, self.af_ends))[0, :, :]
# self.endpoints_true = np.concatenate((self.af_starts, self.af_ends), axis=-1)
if self.class_true == 1 or self.class_true == 2:
(
self.onset_score_range,
self.offset_score_range,
) = self._gen_endpoint_score_range()
else:
self.onset_score_range, self.offset_score_range = None, None
def _load_ref(self):
sig, fields = wfdb.rdsamp(self.sample_path)
ann_ref = wfdb.rdann(self.sample_path, "atr")
fs = fields["fs"]
length = len(sig)
sample_descrip = fields["comments"]
beat_loc = np.array(ann_ref.sample) # r-peak locations
ann_note = np.array(ann_ref.aux_note) # rhythm change flag
af_start_scripts = np.where((ann_note == "(AFIB") | (ann_note == "(AFL"))[0]
af_end_scripts = np.where(ann_note == "(N")[0]
if "non atrial fibrillation" in sample_descrip:
class_true = 0
elif "persistent atrial fibrillation" in sample_descrip:
class_true = 1
elif "paroxysmal atrial fibrillation" in sample_descrip:
class_true = 2
else:
print("Error: the recording is out of range!")
return -1
return fs, length, beat_loc, af_start_scripts, af_end_scripts, class_true
def _gen_endpoint_score_range(self):
""" """
onset_range = np.zeros((self.len_sig,), dtype=np.float)
offset_range = np.zeros((self.len_sig,), dtype=np.float)
for i, af_start in enumerate(self.af_starts):
if self.class_true == 2:
if max(af_start - 1, 0) == 0:
onset_range[: self.beat_loc[af_start + 2]] += 1
elif max(af_start - 2, 0) == 0:
onset_range[self.beat_loc[af_start - 1] : self.beat_loc[af_start + 2]] += 1
onset_range[: self.beat_loc[af_start - 1]] += 0.5
else:
onset_range[self.beat_loc[af_start - 1] : self.beat_loc[af_start + 2]] += 1
onset_range[self.beat_loc[af_start - 2] : self.beat_loc[af_start - 1]] += 0.5
onset_range[self.beat_loc[af_start + 2] : self.beat_loc[af_start + 3]] += 0.5
elif self.class_true == 1:
onset_range[: self.beat_loc[af_start + 2]] += 1
onset_range[self.beat_loc[af_start + 2] : self.beat_loc[af_start + 3]] += 0.5
for i, af_end in enumerate(self.af_ends):
if self.class_true == 2:
if min(af_end + 1, len(self.beat_loc) - 1) == len(self.beat_loc) - 1:
offset_range[self.beat_loc[af_end - 2] :] += 1
elif min(af_end + 2, len(self.beat_loc) - 1) == len(self.beat_loc) - 1:
offset_range[self.beat_loc[af_end - 2] : self.beat_loc[af_end + 1]] += 1
offset_range[self.beat_loc[af_end + 1] :] += 0.5
else:
offset_range[self.beat_loc[af_end - 2] : self.beat_loc[af_end + 1]] += 1
offset_range[self.beat_loc[af_end + 1] : min(self.beat_loc[af_end + 2], self.len_sig - 1)] += 0.5
offset_range[self.beat_loc[af_end - 3] : self.beat_loc[af_end - 2]] += 0.5
elif self.class_true == 1:
offset_range[self.beat_loc[af_end - 2] :] += 1
offset_range[self.beat_loc[af_end - 3] : self.beat_loc[af_end - 2]] += 0.5
return onset_range, offset_range
def load_ans(ans_file):
endpoints_pred = []
if ans_file.endswith(".json"):
json_file = open(ans_file, "r")
ans_dic = json.load(json_file)
endpoints_pred = np.array(ans_dic["predict_endpoints"])
elif ans_file.endswith(".mat"):
ans_struct = sio.loadmat(ans_file)
endpoints_pred = ans_struct["predict_endpoints"] - 1
return endpoints_pred
def ue_calculate(endpoints_pred, endpoints_true, onset_score_range, offset_score_range):
score = 0
ma = len(endpoints_true)
mr = len(endpoints_pred)
if mr == 0:
score = 0
else:
for [start, end] in endpoints_pred:
score += onset_score_range[int(start)]
score += offset_score_range[int(end)]
score *= ma / max(ma, mr)
return score
def ur_calculate(class_true, class_pred):
score = R[int(class_true), int(class_pred)]
return score
def score(data_path, ans_path):
# AF burden estimation
SCORE = []
def is_mat_or_json(file):
return (file.endswith(".json")) + (file.endswith(".mat"))
ans_set = filter(is_mat_or_json, os.listdir(ans_path))
# test_set = open(os.path.join(data_path, 'RECORDS'), 'r').read().splitlines()
for i, ans_sample in enumerate(ans_set):
sample_nam = ans_sample.split(".")[0]
sample_path = os.path.join(data_path, sample_nam)
endpoints_pred = load_ans(os.path.join(ans_path, ans_sample))
TrueRef = RefInfo(sample_path)
if len(endpoints_pred) == 0:
class_pred = 0
elif len(endpoints_pred) == 1 and np.diff(endpoints_pred)[-1] == TrueRef.len_sig - 1:
class_pred = 1
else:
class_pred = 2
ur_score = ur_calculate(TrueRef.class_true, class_pred)
if TrueRef.class_true == 1 or TrueRef.class_true == 2:
ue_score = ue_calculate(
endpoints_pred,
TrueRef.endpoints_true,
TrueRef.onset_score_range,
TrueRef.offset_score_range,
)
else:
ue_score = 0
u = ur_score + ue_score
SCORE.append(u)
score_avg = np.mean(SCORE)
return score_avg
if __name__ == "__main__":
TESTSET_PATH = sys.argv[1]
RESULT_PATH = sys.argv[2]
score_avg = score(TESTSET_PATH, RESULT_PATH)
print("AF Endpoints Detection Performance: %0.4f" % score_avg)
with open(os.path.join(RESULT_PATH, "score.txt"), "w") as score_file:
print("AF Endpoints Detection Performance: %0.4f" % score_avg, file=score_file)
score_file.close()