forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_alibi.py
100 lines (82 loc) · 3.89 KB
/
test_alibi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
from parameterized import parameterized
from transformers.models.bloom.modeling_bloom import build_alibi_tensor
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session, unittest_name_func
class TestAlibi(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def create_random_bool_mask(self, batch_size, seq_len):
mask = torch.zeros(size=[batch_size, seq_len],
dtype=torch.bool,
device="cuda")
seq_lens = torch.randint(low=1,
high=seq_len + 1,
size=[batch_size],
device="cuda")
for b in range(batch_size):
mask[b, :seq_lens[b]] = True
return mask
# We don't run alibi in FP16, so only check FP32 here.
@parameterized.expand([(1, 64, 32), (16, 1, 64), (24, 20, 500),
(32, 128, 60), (64, 32, 1024), (80, 12, 20),
(112, 4, 389)],
name_func=unittest_name_func)
def test_alibi_biases(self, num_heads, batch_size, seq_len):
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
trt_key = Tensor(name='fake_key',
shape=(seq_len, ),
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
key_len = tensorrt_llm.functional.shape(trt_key, 0)
slopes = tensorrt_llm.functional.constant(
tensorrt_llm.functional.generate_alibi_slopes(
num_heads=num_heads))
output = tensorrt_llm.functional.generate_alibi_biases(
slopes, key_len)
output.mark_output('output')
# trt run
inputs = {
'fake_key': torch.empty((seq_len, ),
dtype=torch.int32,
device="cuda")
}
session = create_session(builder, network, precision="float32")
outputs = run_session(session, inputs)
trt_alibi_output = outputs['output']
# transformers reference
binary_mask = self.create_random_bool_mask(batch_size, seq_len)
ref = build_alibi_tensor(binary_mask, num_heads, torch.float32)
ref = ref.reshape(batch_size, num_heads, 1, seq_len)
# We only require that the alibi bias matches in the "valid" regions. Our TRT,
# implementation differs in this regard for efficiency reasons but it does not matter
# because these values will get masked before the softmax.
binary_mask = binary_mask.reshape(batch_size, 1, 1, seq_len)
ref *= binary_mask
trt_alibi_output = torch.repeat_interleave(trt_alibi_output,
batch_size,
dim=0)
trt_alibi_output *= binary_mask
# compare diff
torch.testing.assert_close(trt_alibi_output, ref, atol=1e-3, rtol=1e-2)