-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain_teacher.py
259 lines (210 loc) · 10.6 KB
/
train_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""
Training a single model (student or teacher)
"""
import os
import argparse
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.backends.cudnn as cudnn
import tensorboard_logger as tb_logger
from models import model_dict
from dataset.cifar100 import get_cifar100_dataloaders
from dataset.imagenet import get_imagenet_dataloader
from dataset.imagenet_dali import get_dali_data_loader
from helper.util import save_dict_to_json, reduce_tensor, adjust_learning_rate
from helper.loops import train_vanilla as train, validate_vanilla
def parse_option():
parser = argparse.ArgumentParser('argument for training')
# baisc
parser.add_argument('--print_freq', type=int, default=200, help='print frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num_workers')
parser.add_argument('--epochs', type=int, default=240, help='number of training epochs')
parser.add_argument('--gpu_id', type=str, default='0', help='id(s) for CUDA_VISIBLE_DEVICES')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='150,180,210', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# dataset
parser.add_argument('--model', type=str, default='resnet32x4')
parser.add_argument('--dataset', type=str, default='cifar100', choices=['cifar100', 'imagenet'], help='dataset')
parser.add_argument('-t', '--trial', type=str, default='0', help='the experiment id')
parser.add_argument('--dali', type=str, choices=['cpu', 'gpu'], default=None)
# multiprocessing
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:23451', type=str,
help='url used to set up distributed training')
opt = parser.parse_args()
# set different learning rates for these MobileNet/ShuffleNet models
if opt.model in ['MobileNetV2', 'MobileNetV2_1_0', 'ShuffleV1', 'ShuffleV2', 'ShuffleV2_1_5']:
opt.learning_rate = 0.01
# set the path of model and tensorboard
opt.model_path = './save/teachers/models'
opt.tb_path = './save/teachers/tensorboard'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
# set the model name
opt.model_name = '{}_vanilla_{}_trial_{}'.format(opt.model, opt.dataset, opt.trial)
if opt.dali is not None:
opt.model_name += '_dali:' + opt.dali
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
return opt
best_acc = 0
total_time = time.time()
def main():
opt = parse_option()
# ASSIGN CUDA_ID
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
ngpus_per_node = torch.cuda.device_count()
opt.ngpus_per_node = ngpus_per_node
if opt.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
world_size = 1
opt.world_size = ngpus_per_node * world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, opt))
else:
main_worker(None if ngpus_per_node > 1 else opt.gpu_id, ngpus_per_node, opt)
def main_worker(gpu, ngpus_per_node, opt):
global best_acc, total_time
opt.gpu = int(gpu)
opt.gpu_id = int(gpu)
if opt.gpu is not None:
print("Use GPU: {} for training".format(opt.gpu))
if opt.multiprocessing_distributed:
# Only one node now.
opt.rank = int(gpu)
dist_backend = 'nccl'
dist.init_process_group(backend=dist_backend, init_method=opt.dist_url,
world_size=opt.world_size, rank=opt.rank)
# model
n_cls = {
'cifar100': 100,
'imagenet': 1000,
}.get(opt.dataset, None)
try:
model = model_dict[opt.model](num_classes=n_cls)
except KeyError:
print("This model is not supported.")
# optimizer
optimizer = optim.SGD(model.parameters(),
lr=opt.learning_rate,
momentum=opt.momentum,
weight_decay=opt.weight_decay)
criterion = nn.CrossEntropyLoss()
if torch.cuda.is_available():
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if opt.multiprocessing_distributed:
if opt.gpu is not None:
torch.cuda.set_device(opt.gpu)
model = model.cuda(opt.gpu)
criterion = criterion.cuda(opt.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
opt.batch_size = int(opt.batch_size / ngpus_per_node)
opt.num_workers = int((opt.num_workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[opt.gpu])
else:
print('multiprocessing_distributed must be with a specifiec gpu id')
else:
criterion = criterion.cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model).cuda()
else:
model = model.cuda()
cudnn.benchmark = True
# dataloader
if opt.dataset == 'cifar100':
train_loader, val_loader = get_cifar100_dataloaders(batch_size=opt.batch_size, num_workers=opt.num_workers)
elif opt.dataset == 'imagenet':
if opt.dali is None:
train_loader, val_loader, train_sampler = get_imagenet_dataloader(
dataset = opt.dataset,
batch_size=opt.batch_size, num_workers=opt.num_workers,
multiprocessing_distributed=opt.multiprocessing_distributed)
else:
train_loader, val_loader = get_dali_data_loader(opt)
else:
raise NotImplementedError(opt.dataset)
# tensorboard
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
# routine
for epoch in range(1, opt.epochs + 1):
if opt.multiprocessing_distributed:
if opt.dali is None:
train_sampler.set_epoch(epoch)
# No test_sampler because epoch is random seed, not needed in sequential testing.
adjust_learning_rate(epoch, opt, optimizer)
print("==> training...")
time1 = time.time()
train_acc, train_acc_top5, train_loss = train(epoch, train_loader, model, criterion, optimizer, opt)
time2 = time.time()
if opt.multiprocessing_distributed:
metrics = torch.tensor([train_acc, train_acc_top5, train_loss]).cuda(opt.gpu, non_blocking=True)
reduced = reduce_tensor(metrics, opt.world_size if 'world_size' in opt else 1)
train_acc, train_acc_top5, train_loss = reduced.tolist()
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
print(' * Epoch {}, Acc@1 {:.3f}, Acc@5 {:.3f}, Time {:.2f}'.format(epoch, train_acc, train_acc_top5, time2 - time1))
logger.log_value('train_acc', train_acc, epoch)
logger.log_value('train_loss', train_loss, epoch)
test_acc, test_acc_top5, test_loss = validate_vanilla(val_loader, model, criterion, opt)
if opt.dali is not None:
train_loader.reset()
val_loader.reset()
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
print(' ** Acc@1 {:.3f}, Acc@5 {:.3f}'.format(test_acc, test_acc_top5))
logger.log_value('test_acc', test_acc, epoch)
logger.log_value('test_acc_top5', test_acc_top5, epoch)
logger.log_value('test_loss', test_loss, epoch)
# save the best model
if test_acc > best_acc:
best_acc = test_acc
state = {
'epoch': epoch,
'best_acc': best_acc,
'model': model.module.state_dict() if opt.multiprocessing_distributed else model.state_dict(),
}
save_file = os.path.join(opt.save_folder, '{}_best.pth'.format(opt.model))
test_merics = { 'test_loss': float('%.2f' % test_loss),
'test_acc': float('%.2f' % test_acc),
'test_acc_top5': float('%.2f' % test_acc_top5),
'epoch': epoch}
save_dict_to_json(test_merics, os.path.join(opt.save_folder, "test_best_metrics.json"))
print('saving the best model!')
torch.save(state, save_file)
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
# This best accuracy is only for printing purpose.
print('best accuracy:', best_acc)
# save parameters
state = {k: v for k, v in opt._get_kwargs()}
# No. parameters(M)
num_params = (sum(p.numel() for p in model.parameters())/1000000.0)
state['Total params'] = num_params
state['Total time'] = float('%.2f' % ((time.time() - total_time) / 3600.0))
params_json_path = os.path.join(opt.save_folder, "parameters.json")
save_dict_to_json(state, params_json_path)
if __name__ == '__main__':
main()