Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

question about train #41

Closed
nuist-xinyu opened this issue Aug 23, 2019 · 13 comments
Closed

question about train #41

nuist-xinyu opened this issue Aug 23, 2019 · 13 comments

Comments

@nuist-xinyu
Copy link

ain.py
++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--
/home/xinyu/RRPN_Faster-RCNN_Tensorflow-master
WARNING: Logging before flag parsing goes to stderr.
W0822 20:20:16.743671 140499026802432 deprecation_wrapper.py:119] From ../libs/networks/mobilenet/mobilenet.py:356: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

tfrecord path is --> /home/xinyu/RRPN_Faster-RCNN_Tensorflow-master/data/tfrecord/VOCdevkit_train*
W0822 20:20:16.779687 140499026802432 deprecation_wrapper.py:119] From ../data/io/read_tfrecord.py:85: The name tf.train.match_filenames_once is deprecated. Please use tf.io.match_filenames_once instead.

W0822 20:20:16.782697 140499026802432 deprecation.py:323] From ../data/io/read_tfrecord.py:87: string_input_producer (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by tf.data. Use tf.data.Dataset.from_tensor_slices(string_tensor).shuffle(tf.shape(input_tensor, out_type=tf.int64)[0]).repeat(num_epochs). If shuffle=False, omit the .shuffle(...).
W0822 20:20:16.785707 140499026802432 deprecation.py:323] From /home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/training/input.py:278: input_producer (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by tf.data. Use tf.data.Dataset.from_tensor_slices(input_tensor).shuffle(tf.shape(input_tensor, out_type=tf.int64)[0]).repeat(num_epochs). If shuffle=False, omit the .shuffle(...).
W0822 20:20:16.786247 140499026802432 deprecation.py:323] From /home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/training/input.py:190: limit_epochs (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by tf.data. Use tf.data.Dataset.from_tensors(tensor).repeat(num_epochs).
W0822 20:20:16.787324 140499026802432 deprecation.py:323] From /home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/training/input.py:199: init (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the tf.data module.
W0822 20:20:16.788012 140499026802432 deprecation.py:323] From /home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/training/input.py:199: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the tf.data module.
W0822 20:20:16.790565 140499026802432 deprecation.py:323] From ../data/io/read_tfrecord.py:19: init (from tensorflow.python.ops.io_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by tf.data. Use tf.data.TFRecordDataset.
W0822 20:20:16.791338 140499026802432 deprecation_wrapper.py:119] From ../data/io/read_tfrecord.py:22: The name tf.parse_single_example is deprecated. Please use tf.io.parse_single_example instead.

W0822 20:20:16.791433 140499026802432 deprecation_wrapper.py:119] From ../data/io/read_tfrecord.py:25: The name tf.FixedLenFeature is deprecated. Please use tf.io.FixedLenFeature instead.

W0822 20:20:16.816281 140499026802432 deprecation_wrapper.py:119] From ../data/io/image_preprocess.py:25: The name tf.image.resize_bilinear is deprecated. Please use tf.compat.v1.image.resize_bilinear instead.

W0822 20:20:16.875123 140499026802432 deprecation_wrapper.py:119] From ../data/io/image_preprocess.py:64: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

W0822 20:20:16.905863 140499026802432 deprecation.py:323] From ../data/io/read_tfrecord.py:97: batch (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by tf.data. Use tf.data.Dataset.batch(batch_size) (or padded_batch(...) if dynamic_pad=True).
W0822 20:20:16.912734 140499026802432 deprecation.py:323] From train.py:36: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version.
Instructions for updating:
tf.py_func is deprecated in TF V2. Instead, there are two
options available in V2.
- tf.py_function takes a python function which manipulates tf eager
tensors instead of numpy arrays. It's easy to convert a tf eager tensor to
an ndarray (just call tensor.numpy()) but having access to eager tensors
means tf.py_functions can use accelerators such as GPUs as well as
being differentiable using a gradient tape.
- tf.numpy_function maintains the semantics of the deprecated tf.py_func
(it is not differentiable, and manipulates numpy arrays). It drops the
stateful argument making all functions stateful.

W0822 20:20:16.921506 140499026802432 deprecation_wrapper.py:119] From train.py:44: The name tf.no_regularizer is deprecated. Please use tf.compat.v1.no_regularizer instead.

W0822 20:20:16.923095 140499026802432 deprecation_wrapper.py:119] From ../libs/networks/resnet.py:28: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.

Traceback (most recent call last):
File "train.py", line 195, in
train()
File "train.py", line 55, in train
gtboxes_batch=gtboxes_and_label)
File "../libs/networks/build_whole_network.py", line 357, in build_whole_detection_network
is_training=self.is_training)
File "../libs/detection_oprations/proposal_opr.py", line 66, in postprocess_rpn_proposals
use_gpu=True)
File "../libs/box_utils/nms_rotate.py", line 31, in nms_rotate
device_id=gpu_id)
File "../libs/box_utils/nms_rotate.py", line 101, in nms_rotate_gpu
Tout=tf.int64)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/util/deprecation.py", line 324, in new_func
return func(*args, **kwargs)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 480, in py_func
return py_func_common(func, inp, Tout, stateful, name=name)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 462, in py_func_common
func=func, inp=inp, Tout=Tout, stateful=stateful, eager=False, name=name)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 257, in _internal_py_func
token = _py_funcs.insert(func)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 144, in insert
self._funcs[token] = func
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/weakref.py", line 118, in setitem
self.data[key] = KeyedRef(value, self._remove, key)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/weakref.py", line 311, in new
self = ref.new(type, ob, callback)
TypeError: cannot create weak reference to 'builtin_function_or_method' object

@morning4346
Copy link

请问你们是训练了多长时间,我都训练几天了,loss还是挺高的

@nuist-xinyu
Copy link
Author

nuist-xinyu commented Sep 9, 2019 via email

@morning4346
Copy link

我使用eval做测试时,P-R曲线到了一个阶段急剧下降,请问你知道怎么回事吗,也就是测试结果是召回率很高,但是Precision很低,

@morning4346
Copy link

morning4346 commented Sep 15, 2019 via email

@happydayhappyday
Copy link

您知道为什么我的结果显示的PR曲线中,到了一定阶段,precsion急剧下降原因是什么吗

---Original--- From: "nuist-xinyu"<[email protected]> Date: Mon, Sep 9, 2019 09:16 AM To: "DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow"<[email protected]>; Cc: "Comment"<[email protected]>;"morning4346"<[email protected]>; Subject: Re: [DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow] question about train (#41) 这个要看数据集把 我们数据集比较大 训练了三天左右 loss高的话 你提把你损失权重调小一点试试
------------------ 原始邮件 ------------------ 发件人: "liyinhua4346"<[email protected]>; 发送时间: 2019年9月5日(星期四) 中午11:54 收件人: "DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow"<[email protected]>; 抄送: "请叫我辛先生"<[email protected]>; "Author"<[email protected]>; 主题: Re: [DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow] question abouttrain (#41) 请问你们是训练了多长时间,我都训练几天了,loss还是挺高的 — You are receiving this because you authored the thread. Reply to this email directly, view it on GitHub, or mute the thread. — You are receiving this because you commented. Reply to this email directly, view it on GitHub, or mute the thread.

请问你训练出来了吗?我现在遇到一个问题,训练了很久loss都很高,请问你有什么解决办法吗?或者有什么建议,谢谢

@FortuneStar
Copy link

请问你们是训练了多长时间,我都训练几天了,loss还是挺高的

你好,请问您的问题解决了吗?我训练的loss值也很高,中间停止训练,测试了一下,效果很差。

@nuist-xinyu
Copy link
Author

nuist-xinyu commented Apr 18, 2020 via email

@yangxue0827
Copy link
Member

这个repo很久了,建议使用我其他新的repo,效果好速度快 @FortuneStar

@FortuneStar
Copy link

这个repo很久了,建议使用我其他新的repo,效果好速度快 @FortuneStar

您指的是R2CNN_Faster_RCNN_Tensorflow这个模型是吗?

@yangxue0827
Copy link
Member

RetinatNet_Tensorflow_Rotation R3Det_Tensorflow也可以 @FortuneStar

@FortuneStar
Copy link

RetinatNet_Tensorflow_Rotation R3Det_Tensorflow也可以 @FortuneStar

好的,谢谢您,我有个问题请教您,我自己标记的样本是用labelme工具,生成的是任意四边形,不知道您用的是什么工具。

@yangxue0827
Copy link
Member

我用的开源数据集,DOTA也是任意四边形的标注,代码里会转成旋转矩形 @FortuneStar

@FortuneStar
Copy link

我用的开源数据集,DOTA也是任意四边形的标注,代码里会转成旋转矩形 @FortuneStar

好的,谢谢您的解答

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants