-
Notifications
You must be signed in to change notification settings - Fork 89
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
question about train #41
Comments
请问你们是训练了多长时间,我都训练几天了,loss还是挺高的 |
这个要看数据集把 我们数据集比较大 训练了三天左右
loss高的话 你提把你损失权重调小一点试试
…------------------ 原始邮件 ------------------
发件人: "liyinhua4346"<[email protected]>;
发送时间: 2019年9月5日(星期四) 中午11:54
收件人: "DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow"<[email protected]>;
抄送: "请叫我辛先生"<[email protected]>; "Author"<[email protected]>;
主题: Re: [DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow] question abouttrain (#41)
请问你们是训练了多长时间,我都训练几天了,loss还是挺高的
—
You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHub, or mute the thread.
|
我使用eval做测试时,P-R曲线到了一个阶段急剧下降,请问你知道怎么回事吗,也就是测试结果是召回率很高,但是Precision很低, |
您知道为什么我的结果显示的PR曲线中,到了一定阶段,precsion急剧下降原因是什么吗
…---Original---
From: "nuist-xinyu"<[email protected]>
Date: Mon, Sep 9, 2019 09:16 AM
To: "DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow"<[email protected]>;
Cc: "Comment"<[email protected]>;"morning4346"<[email protected]>;
Subject: Re: [DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow] question about train (#41)
这个要看数据集把 我们数据集比较大 训练了三天左右
loss高的话 你提把你损失权重调小一点试试
------------------ 原始邮件 ------------------
发件人: "liyinhua4346"<[email protected]>;
发送时间: 2019年9月5日(星期四) 中午11:54
收件人: "DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow"<[email protected]>;
抄送: "请叫我辛先生"<[email protected]>; "Author"<[email protected]>;
主题: Re: [DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow] question abouttrain (#41)
请问你们是训练了多长时间,我都训练几天了,loss还是挺高的
—
You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHub, or mute the thread.
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub, or mute the thread.
|
请问你训练出来了吗?我现在遇到一个问题,训练了很久loss都很高,请问你有什么解决办法吗?或者有什么建议,谢谢 |
你好,请问您的问题解决了吗?我训练的loss值也很高,中间停止训练,测试了一下,效果很差。 |
不好意思啊 我已经不做这个了 时间过去的太久了 我也记不得了
…------------------ 原始邮件 ------------------
发件人: "FortuneStar"<[email protected]>;
发送时间: 2020年4月17日(星期五) 上午9:16
收件人: "DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow"<[email protected]>;
抄送: "请叫我辛先生"<[email protected]>; "Author"<[email protected]>;
主题: Re: [DetectionTeamUCAS/RRPN_Faster-RCNN_Tensorflow] question about train (#41)
请问你们是训练了多长时间,我都训练几天了,loss还是挺高的
你好,请问您的问题解决了吗?我训练的loss值也很高,中间停止训练,测试了一下,效果很差。
—
You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHub, or unsubscribe.
|
这个repo很久了,建议使用我其他新的repo,效果好速度快 @FortuneStar |
您指的是R2CNN_Faster_RCNN_Tensorflow这个模型是吗? |
RetinatNet_Tensorflow_Rotation R3Det_Tensorflow也可以 @FortuneStar |
好的,谢谢您,我有个问题请教您,我自己标记的样本是用labelme工具,生成的是任意四边形,不知道您用的是什么工具。 |
我用的开源数据集,DOTA也是任意四边形的标注,代码里会转成旋转矩形 @FortuneStar |
好的,谢谢您的解答 |
ain.py
++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--
/home/xinyu/RRPN_Faster-RCNN_Tensorflow-master
WARNING: Logging before flag parsing goes to stderr.
W0822 20:20:16.743671 140499026802432 deprecation_wrapper.py:119] From ../libs/networks/mobilenet/mobilenet.py:356: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.
tfrecord path is --> /home/xinyu/RRPN_Faster-RCNN_Tensorflow-master/data/tfrecord/VOCdevkit_train*
W0822 20:20:16.779687 140499026802432 deprecation_wrapper.py:119] From ../data/io/read_tfrecord.py:85: The name tf.train.match_filenames_once is deprecated. Please use tf.io.match_filenames_once instead.
W0822 20:20:16.782697 140499026802432 deprecation.py:323] From ../data/io/read_tfrecord.py:87: string_input_producer (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by
tf.data
. Usetf.data.Dataset.from_tensor_slices(string_tensor).shuffle(tf.shape(input_tensor, out_type=tf.int64)[0]).repeat(num_epochs)
. Ifshuffle=False
, omit the.shuffle(...)
.W0822 20:20:16.785707 140499026802432 deprecation.py:323] From /home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/training/input.py:278: input_producer (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by
tf.data
. Usetf.data.Dataset.from_tensor_slices(input_tensor).shuffle(tf.shape(input_tensor, out_type=tf.int64)[0]).repeat(num_epochs)
. Ifshuffle=False
, omit the.shuffle(...)
.W0822 20:20:16.786247 140499026802432 deprecation.py:323] From /home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/training/input.py:190: limit_epochs (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by
tf.data
. Usetf.data.Dataset.from_tensors(tensor).repeat(num_epochs)
.W0822 20:20:16.787324 140499026802432 deprecation.py:323] From /home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/training/input.py:199: init (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the
tf.data
module.W0822 20:20:16.788012 140499026802432 deprecation.py:323] From /home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/training/input.py:199: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the
tf.data
module.W0822 20:20:16.790565 140499026802432 deprecation.py:323] From ../data/io/read_tfrecord.py:19: init (from tensorflow.python.ops.io_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by
tf.data
. Usetf.data.TFRecordDataset
.W0822 20:20:16.791338 140499026802432 deprecation_wrapper.py:119] From ../data/io/read_tfrecord.py:22: The name tf.parse_single_example is deprecated. Please use tf.io.parse_single_example instead.
W0822 20:20:16.791433 140499026802432 deprecation_wrapper.py:119] From ../data/io/read_tfrecord.py:25: The name tf.FixedLenFeature is deprecated. Please use tf.io.FixedLenFeature instead.
W0822 20:20:16.816281 140499026802432 deprecation_wrapper.py:119] From ../data/io/image_preprocess.py:25: The name tf.image.resize_bilinear is deprecated. Please use tf.compat.v1.image.resize_bilinear instead.
W0822 20:20:16.875123 140499026802432 deprecation_wrapper.py:119] From ../data/io/image_preprocess.py:64: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
W0822 20:20:16.905863 140499026802432 deprecation.py:323] From ../data/io/read_tfrecord.py:97: batch (from tensorflow.python.training.input) is deprecated and will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by
tf.data
. Usetf.data.Dataset.batch(batch_size)
(orpadded_batch(...)
ifdynamic_pad=True
).W0822 20:20:16.912734 140499026802432 deprecation.py:323] From train.py:36: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version.
Instructions for updating:
tf.py_func is deprecated in TF V2. Instead, there are two
options available in V2.
- tf.py_function takes a python function which manipulates tf eager
tensors instead of numpy arrays. It's easy to convert a tf eager tensor to
an ndarray (just call tensor.numpy()) but having access to eager tensors
means
tf.py_function
s can use accelerators such as GPUs as well asbeing differentiable using a gradient tape.
- tf.numpy_function maintains the semantics of the deprecated tf.py_func
(it is not differentiable, and manipulates numpy arrays). It drops the
stateful argument making all functions stateful.
W0822 20:20:16.921506 140499026802432 deprecation_wrapper.py:119] From train.py:44: The name tf.no_regularizer is deprecated. Please use tf.compat.v1.no_regularizer instead.
W0822 20:20:16.923095 140499026802432 deprecation_wrapper.py:119] From ../libs/networks/resnet.py:28: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.
Traceback (most recent call last):
File "train.py", line 195, in
train()
File "train.py", line 55, in train
gtboxes_batch=gtboxes_and_label)
File "../libs/networks/build_whole_network.py", line 357, in build_whole_detection_network
is_training=self.is_training)
File "../libs/detection_oprations/proposal_opr.py", line 66, in postprocess_rpn_proposals
use_gpu=True)
File "../libs/box_utils/nms_rotate.py", line 31, in nms_rotate
device_id=gpu_id)
File "../libs/box_utils/nms_rotate.py", line 101, in nms_rotate_gpu
Tout=tf.int64)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/util/deprecation.py", line 324, in new_func
return func(*args, **kwargs)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 480, in py_func
return py_func_common(func, inp, Tout, stateful, name=name)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 462, in py_func_common
func=func, inp=inp, Tout=Tout, stateful=stateful, eager=False, name=name)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 257, in _internal_py_func
token = _py_funcs.insert(func)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 144, in insert
self._funcs[token] = func
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/weakref.py", line 118, in setitem
self.data[key] = KeyedRef(value, self._remove, key)
File "/home/xinyu/anaconda3/envs/RRPN/lib/python2.7/weakref.py", line 311, in new
self = ref.new(type, ob, callback)
TypeError: cannot create weak reference to 'builtin_function_or_method' object
The text was updated successfully, but these errors were encountered: