forked from yuzhimanhua/Multi-BioNER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq_wc.py
executable file
·85 lines (73 loc) · 3.38 KB
/
seq_wc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from __future__ import print_function
import datetime
import time
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
import codecs
from model.crf import *
from model.lm_lstm_crf import *
import model.utils as utils
from model.predictor import predict_wc
import argparse
import json
import os
import sys
from tqdm import tqdm
import itertools
import functools
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluating LM-BLSTM-CRF')
parser.add_argument('--load_arg', default='./checkpoint/ner/ner_4_cwlm_lstm_crf.json', help='path to arg json')
parser.add_argument('--load_check_point', default='./checkpoint/ner/ner_4_cwlm_lstm_crf.model', help='path to model checkpoint file')
parser.add_argument('--gpu',type=int, default=0, help='gpu id')
parser.add_argument('--decode_type', choices=['label', 'string'], default='label', help='type of decode function, set `label` to couple label with text, or set `string` to insert label into test')
parser.add_argument('--batch_size', type=int, default=50, help='size of batch')
parser.add_argument('--input_file', default='data/ner2003/test.txt', help='path to input un-annotated corpus')
parser.add_argument('--output_file', default='annotate/output', help='path to output file')
parser.add_argument('--dataset_no', type=int, default=5, help='number of the datasets')
args = parser.parse_args()
print('loading dictionary')
with open(args.load_arg, 'r') as f:
jd = json.load(f)
jd = jd['args']
checkpoint_file = torch.load(args.load_check_point, map_location=lambda storage, loc: storage)
f_map = checkpoint_file['f_map']
l_map = checkpoint_file['l_map']
c_map = checkpoint_file['c_map']
in_doc_words = checkpoint_file['in_doc_words']
if args.gpu >= 0:
torch.cuda.set_device(args.gpu)
# build model
print('loading model')
ner_model = LM_LSTM_CRF(len(l_map), len(c_map), jd['char_dim'], jd['char_hidden'], jd['char_layers'], jd['word_dim'], jd['word_hidden'], jd['word_layers'], len(f_map), jd['drop_out'], args.dataset_no, large_CRF=jd['small_crf'], if_highway=jd['high_way'], in_doc_words=in_doc_words, highway_layers = jd['highway_layers'])
ner_model.load_state_dict(checkpoint_file['state_dict'])
if args.gpu >= 0:
if_cuda = True
torch.cuda.set_device(args.gpu)
ner_model.cuda()
packer = CRFRepack_WC(len(l_map), True)
else:
if_cuda = False
packer = CRFRepack_WC(len(l_map), False)
decode_label = (args.decode_type == 'label')
predictor = predict_wc(if_cuda, f_map, c_map, l_map, f_map['<eof>'], c_map['\n'], l_map['<pad>'], l_map['<start>'], decode_label, args.batch_size, jd['caseless'])
# loading corpus
print('loading corpus')
lines = []
features = []
with codecs.open(args.input_file, 'r', 'utf-8') as f:
for line in f:
if line == '\n':
features.append(utils.read_features(lines))
lines = []
continue
tmp = line.split()
lines.append(tmp[0])
for idx in range(args.dataset_no):
print('annotating the entity type', idx)
with open(args.output_file+str(idx)+'.txt', 'w') as fout:
for feature in features:
predictor.output_batch(ner_model, feature, fout, idx)
fout.write('\n')